Working Paper

87 - 2

Characteristics of a Blue-Green Algal Bloom in the Neuse River, North Carolina

> Robert R. Christian Donald W. Stanley and Deborah A. Daniel

NATIONAL SEA GRANT DEPOSITORY PELL LIBRARY BUILDING URI, NARRAGANSETT BAY CAMPUS NARRAGANSETT, RI 02882

> UNC Sea Grant College Program Box 8605 North Carolina State University Raleigh, N.C. 27695

CRCULATING COPY Sea Grant' Deinsterv

CHARACTERISTICS OF A BLUE-GREEN ALGAL BLOOM IN THE NEUSE RIVER, NORTH CAROLINA

By

Robert R. Christian¹ Donald W. Stanley² Deborah A. Daniel²

Biology Department¹ and Institute for Coastal and Marine Resources² East Carolina University Greenville, N.C. 27858-4353

This work was sponsored by the Office of Sea Grant, NOAA, U.S. Department of Commerce, under Grant No. NA83AA-D-00012 and the North Carolina Department of Administration. Additional support was provided by the University of North Carolina Water Resources Research Institute. The U.S. Government is authorized to produce and distribute reports for governmental purposes notwithstanding any copyright that may appear hereon.

UNC Sea Grant College Publication UNC-SG-WP-87-2

January 1988

\$3

ABSTRACT

During the summer of 1983 a massive blue-green algal bloom, dominated by Microcystis aeruginosa, developed in the lower Neuse River, N.C. In this report we present detailed data on the spatial and temporal extent of the bloom and associated water chemistry. The data were based on an intensive sampling program during August and September covering 154 km of the river from Goldsboro downstream past New Bern . At times the algal bloom spanned over 100 km, from Seven Springs to Street's Ferry Bridge. It was most intense at Fort Barnwell, as indicated by chlorophyll a concentrations up to 1500 ug/liter. Below Fort Barnwell, the blue-green algal bloom diminished rapidly , but there was a chrysophyte bloom farther downriver in the headwaters of the Neuse Estuary near New Bern. Concentrations of inorganic nitrogen and phosphorus decreased downriver; however, measurable quantities were found throughout most of the river. There was little evidence that nitrogen, phosphorus, or carbon limited growth of the riverine bloom algae, at least during bloom development. The nutrient closest to becoming limiting, however, was nitrogen, and some evidence exists to indicate that limitation arose once the bloom was established.

The paper and pulp mill above New Bern was shown to increase nutrient concentrations in the river locally. The effluent from this mill appeared to have little impact on the blue-green algal bloom, but its relationship to the estuarine bloom is unclear.

Nutrient concentrations were no higher in 1983 than during nonbloom years; thus it is unlikely that increased nutrient availability within a particular volume of water was responsible for the bloom. Unusually low river flow in 1983 may have been a key factor promoting bloom development.

TABLE OF CONTENTS

																										P	age
ABSTRACT		•	•	•	•	•	•	•	•	•	•	•	•	•				•	•	•	•	•	•				ii
LIST OF FIGURES			•		•	•	•		•	•	•	•	•	•				•	•		•	•		•	•		iv
LIST OF TABLES		•	•	•	•	•	•	•	•		•	•	•	•			·	•	•	•	•	•	•	•	•		v
LIST OF APPENDICES			•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•		•			vi
ACKNOWLEDGMENTS .			•	•	•		•		•	•	•	•	•	•					•			•	•			v	iii
INTRODUCTION				•	•	•	•			•	•	•							•	•	•	•					1
Description of Previous studi Objectives	tl es	ne oi	ri E t	lve he	er N	sy Jeu	/st 1se	en e	n •						•	•			• • •		•						1 3 4
METHODS			•	•	•	•	•	•	•	•	•			•				•	•	•							5
RESULTS AND DISCUSS		V		•	•	•	•	•			•	•		•				•	•	•	•	•	•		•		7
Salinity and T Algal Chloroph Primary Produc Nutrient Stand Interactions A	emp yl tiv inor	vit g s	vat va	ind ock	ie I W .s .ab	vet	· M	Jei		nt •	Bi	Lon	nas		•••••			•									7 11 20 22 35
CONCLUSIONS	•		•	•	•	•	•	•	•	•	•	•	•	•	•				•	•	•	•	•	•	•		43
LITERATURE CITED .		•	•	•	•	•	·	•	•	•	•	•	•	•				•	•	•	•	·	•	•	•	•	45
APPENDICES		•		•	•	•	•	•	•	•		•	•	•	•			•		•	•		•				48

LIST OF FIGURES

• •

1.	Map of the Neuse River study area, showing locations of sampling stations	2
2.	Contour map of salinity from Aug. 23 to Sept. 19, 1983	9
3.	Neuse River flow (cfs) at Kinston during study period	10
4.	Chlorophyll a concentrations at Cowpen Landing during 1983	12
5.	Contour map of chlorophyll <u>a</u> concentrations	13
6.	Summer concentrations of chlorophyll <u>a</u> at New Bern	16
7.	Contour map of total, wet weight biomass of phytoplankton	17
8.	Contour map of blue-green algal biomass	18
9.	Contour map of nonblue-green algal biomass	19
10.	Contour map of primary productivity near light saturation and at <u>in situ</u> temperature	21
11.	Contour map of $NO_3 + NO_2$ concentrations	23
12.	Contour map of NH ₄ concentrations	25
13.	Contour map of filterable Kjeldahl N (FKN) concentrations	27
14.	Contour map of particulate Kjeldahl N (PKN) concentrations \ldots	28
15.	Contour map of filterable reactive phosphorus (FRP) concentrations	29
16.	Contour map of total filterable phosphorus (TFP) concentrations	31
17.	Contour map of total phosphorus (TP) concentrations	32
18.	Contour map of total inorganic carbon (TIC) concentrations	36

Page

LIST OF TABLES

Page

1.	Locations of Neuse River sampling stations	6
2.	Chemical and biological analyses of water samples	8
3.	Arithmetic sample means of selected nutrients in the Neuse River during August and September, 1983 sampling program	26
4.	Mean concentrations by station for phosphorus for Aug. 23-Sept. 7 and Sept. 13, 1983	33
5.	Potential influence of Weyerhaeuser effluent on nutrient concentrations in the Neuse River	34
6.	Spearman rank correlation analyses between particulate standing stocks	37
7.	Spearman rank correlation analyses between photosynthetic variables and algal standing stock	38
8.	Spearman rank correlation analyses between nutrient concentrations	40
9.	Spearman rank correlation analyses between nutrient concentrations and algal characteristics	41

۷

LIST OF APPENDICES

, .

Appendix A.	Chlorophyll <u>a</u> concentrations (ug/1) at Neuse River stations sampled between 23 August (23A) and 19 September (19S), 1983
Appendix B.	Phytoplankton wet weight biomass (mg/1) at Neuse River stations sampled between 23 August (23A) and 19 September (19S), 1983
Appendix C.	Wet weight biomass (mg/1) of nonblue-green algae at Neuse River stations sampled between 23 August (23A) and 9 September (19S), 1983
Appendix D.	Wet weight biomass (mg/1) of blue-green algae at Neuse River stations sampled between 23 August (23A) and 9 September (19S), 1983
Appendix E.	Phytoplankton species composition, cell density, and biomass data for the Neuse River, 23 August - 19 September, 1983
Appendix F.	Primary productivity (uM CO ₂ /h) near light saturation at Neuse River stations sampled between 23 August (23A) and 19 September (19S), 1983 67
Appendix G.	Nitrate plus nitrite concentrations (uM) at Neuse River stations sampled between 23 August (23A) and 19 September (19S), 198367
Appendix H.	Ammonium concentrations (uM) at Neuse River stations sampled between 23 August (23A) and 19 September (19S), 1983
Appendix I.	Filterable kjeldahl nitrogen concentrations (uM) at Neuse River stations sampled between 23 August (23A) and 19 September (19S), 1983
Appendix J.	Particulate kjeldahl nitrogen concentrations (uM) at Neuse River stations sampled between 23 August (23A) and 19 September (19S), 1983
Appendix K.	Filterable reactive phosphorus concentrations (uM) at Neuse River stations sampled between 23 August (23A) and 19 September (19A), 1983
Appendix L.	Total filterable phosphorus concentrations (uM) at Neuse River stations sampled between 23 August (23A) and 19 September (19S), 1983

LIST OF APPENDICES (continued)

Page

ACKNOWLEDGMENTS

This work was sponsored by the Office of Sea Grant, NOAA, U.S. Department of Commerce; the North Carolina Department of Administration, the Water Resources Research Institute of the University of North Carolina, and the U.S. Department of Interior.

We wish to thank Loede Harper, Judy Heath, Will Sanderson, Martha Jones, Steve Van Cleve, Roger Barnaby and Grace Mordecai, who aided in this labor-intensive project.

INTRODUCTION

Blue-green algal blooms have occurred periodically in the lower Neuse River since the late 1970s. These blooms aroused public concern over the apparent deterioration of water quality in the river and the threat this posed to the Neuse Estuary farther downstream. This concern led to increased research, monitoring and management efforts sponsored by several agencies. In this report, we describe the results of one such effort funded jointly by the University of North Carolina Sea Grant College Program and the Water Resources Research Institute.

Specifically, we present the results of an intensive sampling program directed toward characterizing the distribution of nutrients, algae and algal productivity during a massive blue-green bloom that occurred in 1983. Also, we discuss the interaction of biological, chemical and physical variables in promoting, maintaining and causing the decline of the bluegreen algal bloom. Lastly, we provide evidence that although the bluegreen algal bloom was restricted to the river, its occurrence coincided with a secondary bloom of other algae downstream at the head of the estuary.

Description of the river system

The Neuse River Basin, a major watershed in North Carolina, drains about 12 percent of the state's land area. Its headwaters at the junction of the Flat and Eno Rivers are within the Piedmont above the recently constructed Falls of the Neuse Reservoir and the urban areas of Durham and Raleigh. The river flows southeasterly through the coastal plain to New Bern where it broadens and mixes with seawater to form the Neuse River Estuary. The Estuary in turn empties into the southern end of Pamlico Sound (Figure 1).

The majority of the land within the basin is agricultural or forested (approximately 88 percent). According to a preliminary nutrient budget (N.C. Department of Natural Resources and Community Development (NCDNRCD) 1983) 79 percent of the total nitrogen loading and 55 percent of the total phosphorus loading to the river come from nonpoint sources. The remainder (21 percent of the nitrogen and 45 percent of the phosphorus) is from 16 municipal and industrial point sources. Most of these are sewage treatment facilities, but the largest discharge is from a paper pulp mill near the river's mouth.

There is general agreement that growth of population, intensified agriculture and industrialization have increased the quantities of nitrogen and phosphorus entering the Neuse River. In 1980, about 1.2 million people lived in the basin, a 19 percent increase in population over the preceding decade. But it has been estimated that total nitrogen concentrations and average loading increased by a much higher percentage (about 60 percent) during the 1970s (NCDNRCD 1983). The result of high loading rates and rapid recycling is that the Neuse River appears to have nitrogen and

FIGURE 1. MAP OF THE NEUSE RIVER STUDY AREA, SHOWING LOCATIONS OF SAMPLING STATIONS

phosphorus available in excess of algal demands under most conditions (Paerl 1983a, Stanley 1983). The water quality concerns for the Neuse River follow those for the Chowan River, which already has been classified by the state as a "nutrient sensitive waterway." The intent of this classification is to prohibit increases in nutrient concentrations in the river (NCDNRCD 1982). Thus, declaration of the Neuse Rover is another nutrient sensitive system is being considered as a first step toward curtailing the deterioration of the river's water quality and its value as an ecological resource.

Previous studies of the Neuse

Other than chemical data collected by the U.S. Geological Survey during a few years in the 1950s and 1960s, most of the information about water quality in the Neuse River has been gathered since the 1970s. Harned (1980) summarized the data collected through 1978 from Clayton, a piedmont site, and from Kinston, a coastal plain site. Hobbie and Smith (1975) reported on studies of the Neuse River Estuary during the early 1970s. Both reports indicated high nitrogen and phosphorus concentrations, although they were generally higher in the river than in the estuary.

Monitoring of the Neuse has increased in intensity since 1978. The N.C. Division of Environmental Management conducts a nutrient and phytoplankton monitoring program, and their data have been summarized in various reports (e.g., NCDNRCD 1980, 1982, 1983, 1984). These reports emphasize the recurrence of blue-green algal blooms on the Neuse, the presence of high nutrient concentrations, the importance of the physical environment in triggering blooms, and the need to reduce nutrient loading.

Research on water quality in the lower Neuse has been ongoing since 1980. Paerl (1983a, 1987) and Paerl and Bowles (1987) conducted a series of algal bioassays from which they concluded that nitrogen and phosphorus often are not limiting to algal growth, but that nitrogen is closer to limiting concentrations than phosphorus. Dissolved inorganic carbon was found to be a potentially limiting factor to primary productivity because of the low alkalinity of the Neuse water. Paerl (1983) also provided evidence that low river flow increases the likelihood of bloom development during summer months when temperature and solar radiation are high. Lastly, Paerl (1983a, 1984) suggested that although elevated salinities can deter the growth of the blue-green algae (Microcystis aeruginosa, Anabaena and Aphanizomenon flos aquae) in the estuary, the intrusion of spiroides saline waters into the river was not sufficient to account for the decline of the 1981 bloom, because salt wedges did not spatially overlap with upstream regions where blooms developed.

Stanley (1983) examined nitrogen cycling, algal photosynthesis and standing crop at a station near Clayton and at a coastal plain station, Cowpen Landing, during 1982, a nonbloom year. He found high nutrient concentrations and low algal biomass and primary productivity throughout the year at both stations. Although most of the total inorganic nitrogen (TIN) was NO_3 -N, 80 percent of the assimilated nitrogen was NH_4 -N. Also,

ammonification rates were generally sufficient to replenish assimilated nitrogen. Again the conclusion was made that nutrients are consistently present in quantities to allow bloom formation and that river flow represents an important regulating factor.

The importance of river flow was reiterated by Stanley and Christian (1984) and Christian et al. (1986). Based on data from several years under widely varying conditions, their conclusion was that chlorophyll a in the lower Neuse remains low (less than 20 ug/liter) and is independent of river flow at flows (measured upriver at Kinston) above 800 to 1,000 cubic feet per second, regardless of the time of year. But at lower discharge rates, chlorophyll a in the river rises dramatically. Stanley and Christian (1984) postulated that at high flows time-of-travel decreases (i.e., river velocity increases), water clarity decreases and turbulence increases, resulting in less favorable conditions for bloom algae and hence prevention of bloom formation. A short time-of-travel means that algae are flushed into the estuary prior to reaching bloom proportions. They tested this hypothesis by means of a mathematical model based on field studies of time-of-travel at different flows and laboratory studies of the growth rates of M. aeruginosa, the blue-green alga that is dominant during blooms (Christian, et al. 1986). The hypothesis was supported by results of model simulation runs, which showed agreement between observed and predicted bloom occurrence over the period from May 1979 through July 1985. The results indicated that water temperature, day length and river flow are key factors in determining whether or not blooms form, assuming nutrient sufficiency for the months May through September. July was found to be the month during which bloom potential is the greatest.

There have been several other recent publications that have added to the ecological information base for the Neuse. These include reports on ecological changes occurring at the freshwater-seawater interface (Christian et al. 1984), primary productivity (Fisher et al. 1982b) and sediment-water interactions within the estuary (Fisher et al. 1982a, Matson et al. 1983). In addition, the physiological ecology of bloom algae has been studied by Paerl and co-workers (Paerl 1983b, Paerl et al. 1985). Thus, a general understanding of the Neuse ecosystem is developing, largely as a result of the concern about the blue-green algal blooms and the need to protect the river and estuary.

Objectives

As described above, blue-green algal blooms have been the focus of Neuse River monitoring and research for several years. But until 1983 there had been no detailed study of nutrient and algal dynamics during the course of a bloom. A massive bloom that developed on the Neuse that summer afforded us the opportunity for such a study. We designed a sampling program to address the following questions:

1) What was the areal extent of the bloom and how long did it last?

2) What was the species composition, cell density and biomass of the algal assemblage during the course of the bloom?

3) What were the patterns of nutrient concentrations in the river during the bloom period?

4) What effects did effluent from Weyerhaeuser's paper and pulp mill have on bloom dynamics?

5) What relationship was there between river flow and bloom characteristics?

6) Did the estuarine microbial community react in any unusual way that could be linked to the freshwater bloom?

In this report we describe results from this sampling effort with respect to these questions.

METHODS

During the first half of 1983, a semimonthly sampling program was maintained at Cowpen Landing, a site on the lower Neuse River a few kilometers upstream from the freshwater-seawater interface (Figure 1). In July, we noted an increase in chlorophyll a concentrations at Cowpen and visible signs of bloom development there and elsewhere in the river. To determine the extent of this bloom, we immediately extended our sampling downriver into the estuary and upriver to Kinston. By mid-August it had become apparent that this was indeed a major blue-green algal bloom. On August 23, we began intensive monitoring. From this date until September 9, we sampled daily or every other day at 15 stations between river marker 22 below New Bern (station 10) and Goldsboro (station 24) (see Figure 1 and Table 1 for station locations). Stations 16 to 24 were intentionally located at highway bridges crossing the river so that we would not have to sample this section of the river by boat. The Goldsboro station was above the bloom, and the station below New Bern was in brackish water downriver from the bloom. Samples were collected on a less frequent schedule (September 13, 19 and 26) as the bloom declined.

Surface water samples were usually collected early in the morning. One person sampled stations 16 to 24 by lowering a bucket from the highway bridges; another person sampled stations 10 to 15 from a boat. Salinity and temperature of the samples were measured in the field, and sample water was placed in acid washed, one-gallon plastic jugs and kept in subdued light for transport to the laboratory.

Usually the samples were in the laboratory by late morning or early afternoon. There subsamples were taken for nutrient, chlorophyll <u>a</u>, algal biomass and primary productivity measurements. Glass fiber filters (Whatman GF/C) were used to separate the dissolved and particulate fractions. Nutrient samples were stored frozen (nitrogen and phosphorus),

5

Table 1. Locations of Neuse River sampling stations

State Road 1915 Bridge (Goldsboro)	изг _о со, 12"- <i>WT</i> 7059' 51"	24
N.C. HİQIMƏY III Bridge	8E ,#S _o LLMT# ,ST _o SEN	53
State Road 1731 Bridge (Seven Springs)	"84`03 ⁰ гз< 44"-"70 ⁰ с73	52
State Road 1002 Bridge	135 ₀ 13, 28"-W7 ⁰ 49' 18"	τz
State Road 1152 Bridge	n35 ⁰ 13′ 28″-w77 ⁰ 46′ 01″	50
U.S. Highway 70 Bypass Bridge (Kinston - west)	#30 <i>↓</i> LE _O LLM-#0₱,\$T _O SEN	61
N.C. Highways 11-55 Bridge (Kinston)	E0 .SE ₀ LLM−9⊅ .⊅T ₀ SEN	81
N.C. Highway 55 Bridge	132 ₀ 71, 42"-"""	Lτ
State Road 1470 Bridge (Fort Barnwell)	61,81 ₀ ∠∠M−97,81 ₀ 5€N	91
State Road 1449 Bridge (Cowpen Landing)	00,01 ₀ /lm61,61 ₀ 5EN	SI
State Road 1400 Bridge (Streets Ferry)	изг _о тт, злм77 ⁰ 07′23"	₽Ţ
River Marker 67	"E₽``20 ⁰ 77' 16"-"81`11 ⁰ 05' 43"	13
River Marker 52	изг _о оо, офМ-лооф, 52.	12
River Marker 34 (New Bern)	njo06, 22"-WJ7001, 57"	ττ
River Marker 22	изг _о о4, 20 <i>-</i> М77 ⁰ 00, 20.	ΟΤ
Location	Latitude-Longitude	Station

.

.

•

or refrigerated for a short time and analyzed later by standard methods given in Table 2. Ammonium concentration analyses were done on day of sampling. The algal samples were preserved with Lugol's acetic acid solution and later were counted by light microscopy. To concentrate the preserved algae prior to counting, we used the membrane filtration method (Am. Public Health Assoc. 1980). Algal wet weight biomass was calculated from the algal cell counts and the estimated average volume of each species. As is customary for this kind of analysis, we assumed a specific gravity of unity for the algae (i.e., $1 \text{ mm}^3 = 1 \text{ mg wet weight}$).

Algal photosynthesis was measured by the carbon-14 technique (Steemann-Nielsen 1952). Samples were incubated for two to four hours in 150 ml glass bottles with 1 ml of a one uCi/ml solution of NaH¹⁴CO₃. The bottles were placed in a water bath under soft white fluorescent tubes that provided near-saturation light intensity (Christian et al. 1986). Temperature of the water bath was maintained near ambient river temperature by an automatic heat exchange device. After incubation aliquots of the samples were filtered through Whatman 934/AH glass fiber filters. The filters were assayed for radioactivity using a liquid scintillation counter. Total inorganic carbon was determined by infrared analysis.

Most of the data in this report are presented in the form of contour maps of the concentration or rate plotted against sampling date (x-axis) and distance upriver or downriver from New Bern (y-axis) (e.g., Figure 2). These contour maps were generated by SYMAP, a computer mapping program (Dougenik and Sheehan 1979). Station numbers are also listed along the right margin of each map. Alphabetic symbols A through F within the maps show the locations and dates of individual samples. These six symbols represent six value ranges that were chosen for each data set. Each range is depicted by a different shading pattern such that more intense shading corresponds to higher values of the variable. Lines separating the levels of shading are isopleths of particular values. Interpolation between sample values was done by the default procedure in SYMAP.

RESULTS AND DISCUSSION

Salinity and temperature

The overall surface salinity pattern during the month of intensive study is shown in Figure 2. Sea water was detected as far as 10 km upstream from New Bern between stations 14 and 15. Downriver, salinity increased gradually to around 5 ppt at the station (10) just below New Bern. Although only surface salinities are shown in Figure 2, we also measured bottom salinities at each station. The results were that above New Bern there was little difference between the surface and bottom measurements, indicating that there was no strong salt wedge in this vicinity. Paerl (1987), sampling less frequently but during the same period, did find a salt wedge near our station 12. Below New Bern, however, a salt wedge was more evident. The lack of a strong salt wedge upriver probably was due to the very low river flow (Figure 3), which

Variable	Preservation Mode	Analysis Technique	Reference		
Nitrogen concentrations	:				
Ammonium	same day measurements	colorimetric	Solorzano (1969)		
Nitrate & nitrate	freezing	cadmium reduction	Strickland & Parsons (1972)		
Filterable	filtration/freezing	Kjeldahl	APHA (1980)		
Kjeldahl Particulate Kjeldahl	filtration/freezing	Kjeldahl	APHA (1980)		
Phosphorus concentratio	ns:				
Filterable reactive	filtration/freezing	molybdate	EPA (1979)		
Total filterable	filtration/freezing	persulfate digestion	EPA (1979)		
Total	freezing	persulfate digestion	EPA (1979)		
Total inorganic carbon	refrigeration	infrared analysis	Stanley (1983)		
Chlorophyll <u>a</u>	filtration/freezing	acetone extraction colorimetric	Strickland & Parsons (1972)		
Primary productivity	N/A	¹⁴ CO ₂ uptake	Stanley (1983)		
Algal species & biomass	Lugol's solution	microscopy	арна (1980)		
Temperature	N/A	YSI meter			
Salinity	N/A	YSI meter			

Table 2. Methods used for chemical and biological analyses of water samples

۰. ۲

FIGURE 2. CONTOUR MAP OF SALINITY FROM AUG. 23 TO SEPT. 19, 1983

FIGURE 3. NEUSE RIVER FLOW (CFS) AT KINSTON DURING STUDY PERIOD

failed to provide the horizontal advective force necessary to create a strong salt wedge.

At stations 10 through 15, water temperatures ranged from 23C to 29C during the month of intensive study. They were highest during August, and declined slowly to 26C on September 13. Lower temperatures were found on September 19 after a rain storm on the previous day. For a given day there was no noticeable variation in temperature among the stations. Usually surface and bottom water temperatures were the same, but occasionally bottom temperatures were slightly (less than 2C) cooler than surface temperatures.

Algal chlorophyll a and wet weight biomass

Between January and mid-July 1983 chlorophyll <u>a</u> concentrations at Cowpen Landing were uniformly low (Figure 4), ranging from less than 1 ug/liter on several occasions to 14 ug/liter in March. Similarly, 21 of the 24 river samples collected in 1982 during another study had chlorophyll <u>a</u> concentrations less than 15 ug/liter (Stanley 1983). Such low chlorophyll <u>a</u> levels are probably typical of nonbloom periods in the Neuse River.

As the 1983 bloom developed during late July, chlorophyll <u>a</u> concentrations rose dramatically (Figure 4). Unfortunately, the intensive sampling did not begin early enough to document this rise. But by 23 August, the concentrations were mostly over 40 ug/liter along a 105 km stretch of the river between stations 15 and 21 (Figure 5). Throughout the intensive study period, concentrations were generally low at the two most upriver stations, highest at Fort Barnwell (station 16), relatively low near the freshwater-seawater interface (stations 12 and 13), and intermediate-tohigh farther out in the estuary (stations 10 and 11) below New Bern. The highest chlorophyll <u>a</u> concentration measured was 1541 ug/liter at station 16 on August 30.

There is evidence that the temporal-spatial pattern of chlorophyll a during the bloom was closely linked to variations in river discharge. Summer flow in the Neuse, based on U.S. Geological Survey data from 1931 to 1986, averages about 2000 cfs, but was much lower in 1983 because of unusually low rainfall in the spring and summer (Figure 3). In the month preceding the start of our intensive sampling, flow at Kinston had declined from around 500 cfs to 250 cfs. The decline was temporarily reversed once by increased runoff on Aug. 6 and 7, but otherwise continued uninterrupted until Aug. 28 (Figure 3). Blue-green algae apparently increased in density during this extended period of low flow (by a mechanism outlined below) until they reached bloom levels upriver. The flow rose sharply on Aug. 28 and 29, and this increased discharge seems to have resulted in a washout of algae in the river between Goldsboro and Kinston, resulting in somewhat lower chlorophyll a concentrations (Figure 5). As flow subsided during the next three days, chlorophyll a levels began to increase again in this region. The increases in chlorophyll a concentration were generally comparable to what would be predicted from growth rate estimates and

FIGURE 4. CHLOROPHYLL A CONCENTRATIONS AT COMPEN LANDING DURING 1983

FIGURE 5. CONTOUR MAP OF CHLOROPHYLL A CONCENTRATIONS

modeling results described in Christian et al. (1986). But another storm led to increased flow on Sept. 2 and 3 and chlorophyll <u>a</u> again fell. Even though flow subsided once more, the algae did not respond with increased growth, for reasons that are unknown. Finally, after Sept. 12, a series of rainfall events led to substantial increases in river flow, and algal chlorophyll remained low in the Goldsboro-Kinston region.

Farther downriver, between Ft. Barnwell and Cowpen Landing, effects of the Aug. 28 and 29, Sept. 2 and 3 and Sept. 13 flow increases on chlorophyll a were delayed and somewhat dampened. The first of these slugs of low-chlorophyll water apparently reached station 15 about Sept. 4, the second on Sept. 10, and the third about Sept. 18. This seems to us to be the most likely explanation for the pattern of variation in chlorophyll at these stations.

If this explanation of chlorophyll variation during the bloom is indeed correct, then river velocities calculated from the patterns of chlorophyll concentrations over time and space ought to match those computed from other methods. If we assume that our sequential synoptic sampling did track slugs of bloom organisms, we can calculate the rate of travel of the bloom. We assume then that the high concentration of chlorophyll a at Kinston (station 19) on Aug. 26 corresponded to that of the first event at station 21. This was a period of fairly constant flow (Figure 3). The corresponding rate of travel was 11 km per day (0.46 km per h; 13 cm per sec). Computations based on movements of other chlorophyll slugs during the study gave similar rates of travel. Also, several gallons of a Rhodamine WT dye solution were dumped into the river at Goldsboro (station 24) on Aug. 22 and traced 37 km downstream. The calculated rate of travel of the dye was 13 km per day (0.55 km per h; 15 cm per sec). Based on these velocities, the estimated time of travel from Goldsboro to Kinston was approximately 6 to 6.5 days.

The model described by Christian et al. (1986) was also used to estimate the time-of-travel of river water between Goldsboro and Kinston. Discharge at Kinston from Aug. 23 through Aug. 27 averaged 250 cfs. This corresponds to a rate of travel of 14.3 km per day which is very close to the estimates based on chlorophyll a concentration and dye patterns.

Chlorophyll <u>a</u> concentrations decreased rapidly downriver from Fort Barnwell to less than 50 ug/liter at a station 5 km above New Bern (Figure 5). Although this dramatic decline of several hundred ug chlorophyll <u>a</u>/liter occurred over a relative short distance (32 km), the amount of time required for the water to traverse this distance probably was quite long compared to the time-of-travel upriver from Fort Barnwell. Paerl (1987), using a current meter to measure flow in the lower end of this region of the river, found that the water sometimes flows upriver when discharge at Kinston is as low as it was during the summer of 1983. Subsequent dye studies by us (Christian et al. 1986) have also demonstrated a substantial decrease in river velocity in this region.

The region of low chlorophyll <u>a</u> concentrations between Fort Barnwell and New Bern coincided with two features of the river. First, as seen in Figure 2, the lower end of this region was at the freshwater-seawater interface (FSI), where river water and ocean water mixing begins. However, it is clear that the chlorophyll decline began far upriver from the FSI, which rules out the possibility that salinity caused the decline. This is supportive of the findings of Paerl (1983a). Second, the Weyerhaeuser pulp and paper mill releases its effluent into this region. The effluent darkly stains the water, and during the study period it represented about 9 percent of the total flow (see later discussion). Coloration decreased farther downstream as estuarine water, river water and effluent mixed.

At the head of the Neuse Estuary near New Bern, chlorophyll <u>a</u> concentrations rose again to 50 ug/liter or more. This secondary peak in the estuary was large relative to chlorophyll concentrations there during nonbloom summers. This is shown in Figure 6, which is a plot of chlorophyll at New Bern from the early 1970s (Hobbie and Smith 1975) and from our measurements during several more recent years. It is quite evident that the estuarine bloom in 1983 was concomitant with the freshwater, riverine bloom.

Figure 7 is a contour plot of total, wet weight biomass of phytoplankton. Generally, biomass showed less variability than chlorophyll <u>a</u> concentrations, but some of the apparent differences are a result of differences in the contour ranges used in the plots. Also, phytoplankton samples were taken less frequently than chlorophyll samples. However, a comparison of Figures 5 and 6 shows that the overall patterns in chlorophyll <u>a</u> and wet weight biomass are obviously similar. With a few exceptions, upriver stations had the lowest biomasses. The highest biomasses were at Ft. Barnwell (i.e. 162.4 mg/liter on Aug. 28 and 107.0 mg/liter on Sept. 1). Biomass declined downriver from Fort Barnwell until a secondary bloom was observed at the head of the estuary.

Dividing the total phytoplankton biomass into blue-green (Figure 8) and nonblue-green (Figure 9) components shows obvious differences in the biomass and distribution patterns of these two groups. Blue-green algae were found only once in the Goldsboro samples and only twice (Sept. 9 and 13) at station 23, 16 km below Goldsboro. However, the two peaks in chlorophyll near Seven Springs (Figure 4) were the result of blue-green algae. Blue-green algal biomass was greatest at Fort Barnwell where it accounted for almost all of the total algal biomass. M. aeruginosa was the dominant species, reaching densities as high as 4,700 million cells/liter (station 16, August 28). Below Ft. Barnwell blue-green algal biomass decreased until none were found at the final two stations during the entire study period. However, between Sept. 19 and 26, rain caused a washout of blue-green algae into the estuary from the Neuse River and perhaps other tributaries. Consequently, on Sept. 26, M. aeruginosa was found at estuarine stations as far down as Janiero (Figure 1).

The upriver algal assemblage was dominated by eukaryotic, nonbluegreen algae except during the two previously described peaks in biomass (Figure 9). Also, in the reach between Seven Springs (station 22) and Kinston (stations 17 and 18), eukaryotic algae dominated the assemblage much of the time. However, in the Ft. Barnwell-Cowpen Landing area, these

FIGURE 6. SUMMER CONCENTRATIONS OF CHLOROPHYLL A AT NEW BERN

FIGURE 7. CONTOUR MAP OF TOTAL, WET WEIGHT BIOMASS OF PHYTOPLANKTON

FIGURE 8. CONTOUR MAP OF BLUE-GREEN ALGAL BIOMASS

FIGURE 9. CONTOUR MAP OF NONBLUE-GREEN ALGAL BIOMASS

algae were a minor component of biomass. They again assumed dominance farther downriver and in the estuary. The bloom in the estuary was all eukaryotic algae. Diatoms and chlorophytes were the major groups in freshwater portions. Diatoms and chlorophytes also form a distinct spring bloom in the river (Paerl 1987). The estuarine bloom was dominated by nondiatom chrysophytes. Although blue-green algae dominated the riverine bloom, eukaryotic algae were responsible for the secondary, estuarine bloom. See Appendix E for a detailed summary of phytoplankton taxa identified during this study.

Our findings are similar in some respects to those presented by the North Carolina Division of Environmental Management (NCDNRCD 1984) from their monthly monitoring program. In Aug. 1983, they found high chlorophyll <u>a</u> concentrations and blue-green algal biomass at Ft. Barnwell and decreases in both farther downriver. They identified the dominant alga as <u>Anacystis cyanae</u>, which we believe to be synonymous with <u>M. aeruginosa</u>. However, they found more diversity among the blue-green algae than we did. They also found a secondary bloom at New Bern, but for August they reported a dominance by blue-green algae, not eukaryotic algae at this location. Blue-green algae were not present in their September sample, and in October, chrysophytes dominated their New Bern sample. The reason for the differences in dominant algae reported is unknown.

Primary productivity

The pattern of primary productivity between Aug. 23 and Sept. 9 (Figure 10) was similar to that of chlorophyll <u>a</u> concentrations (Figure 5). Productivity was lowest at the most upriver stations. All samples from Goldsboro had rates less than 1 uM CO_2/h . The two slugs of high chlorophyll <u>a</u> waters from Seven Springs also showed elevated rates of primary production. High productivities (greater than 20 uM CO_2/h) extended from Kinston to Cowpen Landing at various times during the study. Below Cowpen Landing, productivities decreased to below 10 uM CO_2/h but rose again at the head of the estuary. Although the highest measured productivity was found on Aug. 28 at Cowpen Landing (40 uM CO_2/h), estuarine productivity was often as high as that in the primary, riverine bloom. Nineteen of 22 samples from the two estuarine stations had productivities of 10 uM CO_2/h or higher.

The per-liter productivity values reported here cannot readily be converted to <u>in situ</u> or areal rates. Much of the upper portion of our study area was so shallow that it is unlikely that light would limit algal growth except during times of blooms (Christian et al. 1986). In deeper parts of the river, in the estuary and within the blooms, light could be limiting to many of the phytoplankton (Paerl 1983a; Christian et al. 1986). Thus, in those instances, depth averaged, <u>in situ</u> rates would be less than the rates reported here.

Photosynthetic efficiencies were calculated as: 1) um $CO_2/(h \times ug$ chlorophyll a), and 2) as um $CO_2/(h \times mg$ wet wt. of phytoplankton). Mean values of the first efficiency index for the 15 stations over the study

FIGURE 10. CONTOUR MAP OF PRIMARY PRODUCTIVITY NEAR LIGHT SATURATION AND AT IN SITU TEMPERATURE

period ranged from 0.19 to 2.36 um $CO_2/(h \times ug chlorophyll a)$, with an overall average of 0.54 um $CO_2/(h \times ug chlorophyll a)$. No obvious trends were found. The second efficiency index ranged from 2.0 to 122.6 um $CO_2/(h \times mg \text{ wet})$ for station averages, and the overall mean was 18.53 um $CO_2/(h \times mg \text{ wet wt.})$. Again no obvious trends were found.

It would be tempting to invoke a cause and effect relationship between the primary, riverine bloom and the secondary, estuarine bloom. The mechanism would involve three steps: 1) the death and decomposition of the former bloom, 2) increased inorganic nutrient levels resulting from mineralization of the decomposing algae, and 3) stimulation of growth of the secondary bloom organisms. However, two observations cast doubt on this relationship. First, as is described in the next section, there were no large increases in nutrient concentrations concomitant with the decreases in algal biomass. There were increases in nitrogen concentrations near the estuary's head, but these can be related to the effluent from the Weyerhaeuser paper and pulp mill. Second, there were unusually high concentrations of chlorophyll a in the upper reach of the Pamlico River Estuary around the same time (Stanley 1984), even though there was no blue-green algal bloom upstream in the Tar River. This circumstantial evidence may be used to infer that the Neuse riverine bloom was not directly linked to the estuarine bloom. More work on the relationship between these two blooms in ongoing (Stanley and Christian, unpublished data).

Nutrient Standing Stocks

Various inorganic and organic forms on nitrogen, phosphorus and carbon were measured during the study (Table 2). In the following discussion, we describe the spatial and temporal patterns of standing stocks of these nutrients relative to the occurrence of the blooms.

Nitrate nitrogen (NO₃-N) concentrations at the most upriver station were greater than 50 uM on half of the sampling dates and below 20 uM on the other half (Figure 11). The higher concentrations were generally found near the beginning of the study period. During this period, concentrations generally decreased downriver. Such decreases were less evident when concentrations were low upriver. Above Cowpen Landing, NO₃-N concentrations were often greater than 10 uM. Thus, the presence of high densities of blue-green algae from Kinston to Fort Barnwell were not necessarily associated with depletion of NO₃. Near Cowpen Landing, concentrations below 10 uM were found most of the time. Paerl (1987) also found low concentrations of NO₃-N during the same period at his stations a few km below Cowpen Landing. Concentrations were generally between 1 and 10 uM below Cowpen Landing until the estuary was reached. Periodically, concentrations rose in the area of the Weyerhaeuser effluent. Within the estuary, concentrations fell to the limits of detection.

The spatial pattern of NO_3 -N concentrations during the first half of the 1983 study period was similar to that for yearly averages (1979-1982) presented in Stanley (1983). But during the latter half of the study, the

FIGURE 11. CONTOUR MAP OF NO3 AND NO2 CONCENTRATIONS

concentrations upriver were below these annual means. Also, the pattern for the first half of the study period, but not the second, was similar to that reported by NCDNRCD (1984) for August 1983. It appears, therefore, that NO_3 -N remained in high enough concentrations to support algal growth for most of the freshwater bloom but may have decreased to limiting concentrations immediately before and within the estuary.

Above the Weyerhaeuser pulp and paper mill, NH_4 -N concentrations were generally lower than those of NO_3 -N (Figure 12 and Table 3), following a pattern that has been noted by others (Harned 1980, Stanley 1983, NCDNRCD 1984, Christian et al. 1984, Paerl 1987). NH_4 -N levels less than 2 uM NH_4 -N were associated with the blue-green algal bloom between Kinston and Fort Barnwell. Low concentrations were found often at Cowpen Landing. NH_4 -N levels rose dramatically as river water mixed with Weyerhaeuser effluent, but decreased farther downstream as the high-nutrient effluent became diluted with estuarine water.

Filterable (FKN) and particulate (PKN) Kjeldahl nitrogen patterns are shown in Figures 13 and 14, respectively. FKN was not measured until Sept. 1. Concentrations ranged from 25 to 72 uM with the highest concentrations immediately below the discharge of the Weyerhaeuser plant. Outside this area, concentrations varied only about two fold, with no apparent upstreamdownstream trends. The concentrations were within the range of FKN (sic DKN) reported by Stanley (1983) for Clayton and Cowpen Landing for 1982. Thus, there is no evidence that the bloom produced unusually high concentrations of FKN.

PKN concentrations were highly variable, ranging from less than 0.5 to 2800 uM. Variability was great both within one day between stations and within one station between days. The overall pattern, however, was similar to that of chlorophyll <u>a</u> (Figure 5). Thus the blooms of algae, both prokaryotic and eukaryotic, appeared to be responsible for high PKN concentrations. These high values were in excess of any particulate nitrogen values measured by Stanley (1983) during nonbloom conditions.

FKN includes both organic nitrogen and NH_4 -N. From a comparison of the FKN and NH_4 -N concentration data, it is evident that most of the "filterable" nitrogen was not NH_4 -N, but rather was organic. FKN concentrations were generally higher than PKN concentrations where blooms were not present. This relationship reversed where blooms occurred.

Three fractions of phosphorus were measured: filterable reactive phosphorus (FRP), total phosphorus (TP) and total filterable phosphorus (TFP). FRP is primarily orthophosphate, the inorganic form most readily available as a phytoplankton nutrient. FRP was highest upriver where concentrations were generally in the 10 to 20 uM range (Figure 15). Concentrations then gradually decreased downriver. A slight increase in concentration was evident below the Weyerhaeuser plant, but this rise was often less than what can be seen within the contour map sensitivity. Also, the magnitude was far less than that observed for $\rm NH_4-N$. FRP was lowest at the head of the estuary, but concentrations never went below 2.5 uM at any time or location. If FRP were important in limiting phytoplankton growth,

FIGURE 12. CONTOUR MAP OF NH_4 CONCENTRATIONS

Station	FRP	TFP	TP	NH4	NO3+NO2	TIN	TIN:FRP
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10	15.0 13.8 11.6 10.7 9.8 7.3 7.2 6.8 6.6 6.6 5.1 5.8 5.3 3.9 3.9	14.6 14.2 12.8 11.5 10.7 8.9 8.9 8.9 8.7 7.9 6.5 7.9 7.3 5.5 5.6	13.9 12.8 11.8 13.1 10.9 10.4 17.0 17.3 16.9 9.7 7.9 8.1 35.5 6.7 7.3	8.7 8.5 6.5 6.4 5.5 3.1 2.2 2.6 4.3 1.8 4.1 24.8 21.2 4.6 1.7	42 39 32 29 28 19 19 19 19 14 5 7 10 10 3 2	53 50 40 37 35 23 22 22 18 6 11 35 30 8 4	3.8 4.2 4.1 3.9 3.9 3.8 3.9 3.8 2.8 0.9 2.0 6.0 5.9 2.0 0.9

Table 3. Arithmetic means of concentrations of selected nutrients in the Neuse River during August and September, 1983. All concentrations are uM.

.

.

FIGURE 14. CONTOUR MAP OF PARTICULATE KJELDAHL N (FKN) CONCENTRATIONS

FIGURE IS, CONTOUR MAP OF FILTERABLE REACTIVE PHOSPHORUS (FRP) CONCENTRATIONS

53

one would expect greater variability and a much closer coupling between FRP and chlorophyll <u>a</u> concentrations than is found (Imberger et al. 1983). Thus, these results are inferential evidence that FRP is unlikely to limit bloom productivity.

Total filterable phosphorus (TFP) and total phosphorus (TP) concentrations are shown in Figures 16 and 17, respectively. The pattern of TFP was similar to that of FRP. There was a general decrease in concentration downriver. The TP pattern was similar to TFP and FRP with the exception of islands of high concentration on Aug. 30 and Sept. 7.

The arithmetic mean concentrations of FRP, TFP and TP for each station between Aug. 23 and Sept. 13 are shown in Table 4. It is evident that most of the river borne phosphorus was in the FRP fraction. The proportion in the FRP fraction was greatest upriver and became less important downriver, although it was still the largest fraction at the head of the estuary. The high TP means for stations 16, 17, 18 and 12 were the result of inordinately high values for Aug. 30. Mean concentrations without the values from this date are shown in parentheses.

The ratio of total inorganic nitrogen (TIN) to FRP has been used to indicate which of the two elements is most likely to be limiting to algal growth. Ratios less than 15:1 may be indicative of nitrogen limitation, although problems with such an interpretation are possible (Smith 1984). The sample mean ratios for the Neuse study are shown in Table 3. There are slight deviations in values for phosphorus concentrations between Tables 3 and 4 as a result of the dates considered. In Table 3 only the dates where all analyses were made were considered. The small deviations have little impact on the final interpretation. Mean ratios ranged between 6:1 and 0.9:1. They were around 4:1 upriver, fell to 0.9:1 in the region of peak blue-green biomass, increased below Weyerhaeuser because of high ammonium levels, and fell again to less than 1:1 at the head of the estuary. With the exception of four stations on Aug. 30, all ratios were less than 10:1. The generally low ratios support the hypothesis of Paerl (1983, 1987) that nitrogen is more likely to be limiting than phosphorus in the Neuse. However, even though the ratios are low, there is nevertheless considerable nitrogen in the river at most times.

Nutrient concentrations in the area around the Weyerhaeuser paper and pulp mill were often higher than at neighboring stations. This was presumably due to the loading from the mill's effluent. In Table 5 we show predictions of the influence of Weyerhaeuser effluent on selected nutrient concentrations. To compare loading rates from both sources, we multiplied concentrations of nutrients in the effluent and river times estimated discharge rates of water from both sources. Although the discharge of water from the plant was estimated to be only 9 percent of the total river discharge, mill nutrient discharges were estimated to comprise 14 percent of the total FRP load and 70 percent of the NH₄-N load. Based on these estimates, predictions of nutrient concentrations at Station 13 were made, and they turned out to be similar to measured mean concentrations for NO₃ + NO₂, FRP and TP. Predicted TKN levels at Station 13 were higher than the measured, and those of NH₄ and FKN were lower than measured. Rapid

FIGURE 17. CONTOUR MAP OF TOTAL PHOSPHORUS (TP) CONCENTRATIONS

Station	Filterable Reactive Phosphorus (FRP)	Total Filterable Phosphorus (TFP)	Total Phosphorus (TP)
24	14.6 + 3.6	14.2 + 5.1	14.6 + 4.5
23	13.1 + 2.1	13.2 + 4.0	13.4 + 3.3
22	11.2 + 3.8	12.3 + 4.4	12.1 + 2.4
21	9.9 + 2.5	12.2 + 5.6	13.2 + 5.5
20	9.3 + 2.0	10.5 + 2.5	11.1 + 2.1
19	6.8 + 1.6	8.6 + 1.9	10.6 + 3.0
18	6.8 + 1.5	8.8 + 2.4	16.4 + 26.3 (8.5)
17	6.6 + 1.5	9.2 + 3.2	17.5 + 25.7 (9.4)
16	6.8 + 1.7	8.6 + 2.3	15.8 + 10.6 (12.9)
15	6.8 + 1.9	8.0 + 1.8	10.0 + 2.8
14	5.3 + 1.1	6.8 + 1.5	8.1 + 1.6
13	6.0 + 1.1	8.3 + 2.3	8.4 + 1.6
12	5.5 + 1.2	7.7 + 2.2	7.1 + 1.9
11	4.1 + 1.0	5.6 + 1.4	6.7 + 1.6
10	3.9 + 0.8	5.8 + 1.2	7.4 + 2.0

Table 4. Mean concentrations by station for phosphorus for Aug. 23-Sept. 7 and Sept. 13, 1983. All concentrations are uM. Standard deviations are given also.

.

Variable	Unit	NH4	NO3+NO2	TKN	FKN	FRP	TP	Water
Predicted effluent concentration	uM	99	25	515	204	8.5	24	
Effluent loading rate ²	m mole/sec	117	29	608	241	10	29	-
Mean conc. at Sta. 14	uM	4	7	118	38	5	8	-
River loading rate	m mole/sec	49	86	1,455	469	62	99	-
Total loading rate ⁴	m mole/sec	166	115	2.063	710	72	128	-
% effluent loading	8	70	25	29	34	14	23	9
Predicted conc. at Sta. 13 ⁴	uM	12	9	153	53	5	9	-
Measured mean conc. at Sta. 13	uM	25	10	101	65	6	8	-

Table 5. Potential influence of Weyerhaeuser effluent on nutrient concentrations in the Neuse River.

 $^1\ensuremath{\text{Mean}}$ values from Stanley (unpublished data).

²Loading rate of water = 1.18 m^3 /sec based on NCDNRCD 1984.

 3 Flow = 12.33 m³/sec. This value is the average river discharge from August 23-September 19, 1983 times 1.5 as drainage area correction (13.51 m³/sec) minus the amount of water used by Weyerhaeuser (1.18 m³/sec).

⁴Effluent plus river values.

recycling between these three nutrient forms and estimation uncertainties may be the reasons for the discrepancies.

Total inorganic carbon (TIC) patterns during the study are shown in Figure 18. In the low alkalinity waters of the Neuse, TIC concentrations generally remained below 1 mM upriver from the FSI and the paper mill. TIC concentrations above this region were as low as 0.3 mM and were often in the 0.4 to 0.6 mM range. These low TIC concentrations in the Neuse River, along with evidence from algal bioassay experiments have led Paerl (1983) to postulate that carbon may be a limiting nutrient at times.

In summary, there were three factors primarily responsible for the observed patterns of nutrient standing stocks: the blooms, Weyerhaeuser's paper and pulp mill effluent, and the estuary's influence. Of the three elements examined, nitrogen showed the closest association with each of these. TIN declined somewhat in association with the bloom, rose in the region of the effluent, and declined in the estuary. PKN fluctuations were associated with blooms, and FKN rose in the region of the effluent. Filterable phosphorus species and TIC were less variable.

Interactions Among Variables

In order to test for interactions among the various chemical, biological, and physical factors studied, Spearman rank correlation analyses were made. This nonparametric method of analysis was used because we had no reason to believe that correlations would be linear or that covariation would be parametric, two assumptions inherent in the more common Pearson correlation analysis. The results are shown in Tables 6 through 9. Significance was considered at the p<0.05 level, and 86 of 172 analyses were significant. Most of these were significant at the p<0.005 level. We consider the correlations within four categories: 1) particulate standing stocks, 2) photosynthesis rates and algal standing crops, 3) nutrient standing stocks, and 4) nutrient standing stocks and algal characteristics.

The particulate standing stocks considered were PKN, chlorophyll <u>a</u>, blue-green algal biomass, nonblue-green algal biomass, and total phytoplankton biomass (Table 6). PKN correlated significantly and positively with chlorophyll <u>a</u> concentrations, blue-green algal and total phytoplankton biomass, but not with nonblue-green algal biomass. Thus the pattern of particulate nitrogen concentrations was most related to the riverine bloom of blue-green algae. Chlorophyll <u>a</u> concentrations and total phytoplankton biomass were positively correlated. In contrast, blue-green and nonbluegreen algal biomasses were not correlated either positively or negatively with each other. These results confirm the earlier discussions we have presented.

Photosynthesis or primary production rate correlated positively with all measures of algal standing crop (Table 7). Photosynthetic efficiency indices did not correlate with photosynthesis rate. Photosynthetic efficiency 1 (um $CO_2/(hr \times ug \text{ chlorophyll }\underline{a})$) was negatively correlated

FIGURE 18. CONTOUR MAP OF TOTAL INORGANIC CAREON (TIC) CONCENTRATIONS

	PKN	Chlorophyll <u>a</u>	Blue-green algal biomass	Non blue-green algal biomass
Total phytoplankton biomass	0.462 (0.001)	0.641 (0.001)	0.593 (0.001)	0.568 (0.001)
Non blue-green algal biomass	0.130 (0.187)	0.271 (0.003)	-0.084 (0.366)	
Blue-green algal biomass	0.392 (0.001)	0.396 (0.001)		
Chlorophyll <u>a</u>	0.696 (0.001)		1 	
				· · · · · · · · · · · · · · · · · · ·

Table 6. Spearman rank correlation analyses for particulate standing stocks. The calculated coefficients and significance are given.

.

	Photosynthesis	Photosynthetic	Photosynthetic
	rate	efficiency 1	efficiency 2
PKN	0.773	-0.167	-0.168
	(0.001)	(0.042)	(0.156)
Chlorophyll <u>a</u>	0.778	-0.429	-0.298
	(0.001)	(0.001)	(0.005)
Total phytoplankton biomass	0.617 (0.001)	-0.169 (0.116)	-0.774 (0.001)
Blue-green	0.358	-0.140	-0.461
algal biomass	(0.001)	(0.192)	(0.001)
Non blue-green	0.316	-0.099	-0.454
algal biomass	(0.003)	(0.361)	(0.001)
Photosynthesis		0.103	-0.064
rate		(0.189)	(0.555)
Photosynthetic efficiency 1			0.391 (0.001)

Table 7. Spearman rank correlation analyses between photosynthetic variables and algal standing stock. Correlation coefficients and significance are given.

.

. •

with PKN and chlorophyll <u>a</u>. Photosynthetic efficiency 2 (um $O_2/(hr x mg wet wt.))$ was negatively correlated with chlorophyll, and all phytoplanktonic biomass. The two efficiencies were positively correlated. Thus as biomass increased the efficiency of photosynthesis decreased. There are two possible explanations for these negative correlations between biomass and efficiencies. First, as biomass increased, the physiological capabilities of the phytoplankton may have been compromised as density-dependent limitation. The second explanation is related to the sensitivity of the various measurements. The highest efficiencies were found when biomass values were very low, bordering on the limits of detection. The inaccuracy and imprecision of these latter measures are incorporated into the denominator of the efficiency calculation. As such inordinately high efficiencies may be derived.

The interrelationships between nutrient species are shown in Table 8. Correlations between nutrient species generally reflect similar or inverse trends with distance downriver. For example, TIC concentrations were low along much of the river but began to rise at Fort Barnwell and continued to increase under the influence of brackish water mixing. Many of the other nutrients began with high concentrations upriver and decreased in concentration downriver. As a result, TIC was negatively correlated with NO_3-N , Nitrogen and phosphorus species generally correlated well FRP and TFP. within element and between elements in a positive fashion. The major exception to this was FKN, which did not correlate with either NO2-N or TFP and correlated negatively with FRP. FKN varied little along most of the river but rose in the neighborhood of the paper and pulp mill as a result The ratio of TIN to FRP was most strongly related to of its effluent. nitrogen species as opposed to phosphorus species. It correlated positively with all species of nitrogen and did not correlate at all with phosphorus species.

The interrelationships between algal characteristics and nutrients are shown in Table 9. The only nutrient species that did not show any relationship to algal properties was FKN. As discussed previously, the major source of variation to FKN was the paper and pulp mill. TIC demonstrated a unique relationship with algal standing stock and photosynthesis characteristics. It was positively correlated with PKN, productivity and photosynthetic efficiencies. These correlations appear to be linked to the activities at the estuary's head and a general increase in TIC concentration from Fort Barnwell downriver. As such there is little statistical evidence of TIC limitation to bloom algae in this region. Although nonblue-green algae may still be subject to TIC limitation at times, the buoyant blue-green algae of the blooms may circumvent such limitation (Paerl and Ustach 1982). In contrast, NH_4 -N and TIN were negatively correlated with all measures of algal standing crop and Also, NO3-N, FRP, TFP, and TIN: FRP were negatively production rate. correlated with measures of total algal standing crop (PKN, chlorophyll a, total phytoplankton biomass) and productivity. These relationships may reflect the uptake of nutrients by both blooms and the influence of the paper and pulp mill effluent. Lower algal biomass and productivities, and higher nutrient concentrations were found in the area of the effluent. Most increases in concentrations could be ascribed to the effluent itself.

39

	NH4-N	FKN	NO3-N	TIN	FRP	TFP	TIN:FRP
TIC	0.153 (0.059)	0.429 (0.001)	-0.303 (0.001)	-0.148 (0.071)	-0.424 (0.001)	-0.322 (0.001)	-0.010 (0.907)
TIN:FI	RP 0.548 (0.001)	0.412 (0.001)	0.757 (0.001	0.913 (0.001)	0.072 (0.362)	0.146 (0.065)	
TFP	0.233 (0.002)	-0.122 (0.214)	0.327 (0.001)	0.389 (0.001)	0.693 (0.001)		
FRP	0.225 (0.004)	-0.225 (0.033)	0.441 (0.001)	0.442 (0.001)			
TIN	0.590 (0.001)	0.372 (0.001)	0.863 (0.001)				
NO3-N	0.215 (0.004)	-0.082 (0.405)					
FKN	0.576 (0.001)						

Table 8. Spearman rank correlation analyses for nutrient concentrations. Correlation coefficients and significance are given.

1

	NH4-N	FKN	NO3-N	TIN	FRP	TFP	TIN:FRP	TIC
PKN	-0.56	-0.11	-0.36	-0.57	-0.43	-0.41	-0.48	-0.16
	(0.001)	(0.254)	(0.001	(0.00)	(0.00)	(0.001)	(0.001)	(0.048
Chlorophyll <u>a</u>	-0.55	0.04	-0.35	0.51	-0.46	-0.40	-0.398	0.16
	(0.001)	(0.619)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.161
Total phytoplankton biomass	-0.51 (0.001)	-0.20 (0.083)	-0.38 (0.001)	-0.59 (0.001)	-0.26 (0.006)	-0.26 (0.004)	-0.45 (0.001)	0.01 (0.883
Blue-green	-0.22	-0.20	-0.16	-0.31	-0.09	-0.03	-0.27	0.07
algal biomass	(0.023)	(0.080)	(0.082)	(0.002)	(0.352)	(0.739)	(0.010)	(0.509
Non blue- green algal biomass	-0.41 (0.001)	-0.18 (0.111)	-0.15 (0.091)	-0.31 (0.002)	-0.22 (0.020)	-0.12 0.178)	-0.14 (0.169)	0.02 (0.807
Photosynthesis	-0.59	0.00	-0.52	-0.66	-0.53	-0.46	-0.50	0.33
rate	(0.001)	(0.953)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001)	(0.001
Photosynthetic	0.03	-0.18	-0.14	-0.12	-0.20	-0.17	-0.02	0.35
efficiency 1	(0.638)	(0.106)	(0.063)	(0.129	(0.013)	(0.029)	(0.727)	(0.001
Photosynthetic	0.16	0.01	0.16	0.25	-0.22	-0.05	0.30	0.22
efficiency 2	(0.121)	(0.940)	(0.138)	(0.017)	(0.060)	(0.634)	(0.011)	(0.041

Table 9. Spearman rank correlation analyses between nutrient concentrations and algal characteristics. Correlation coefficients and significance are given.

•

Nutrient species were more readily related to total phytoplankton characteristics than to either blue-green or nonblue-green algal biomasses individually. This probably reflects the fact that two separate blooms were observed: one of each kind. Thus each category only accounted for the uptake of nutrients within a specific portion of the transect.

The relationships between nutrients and photosynthetic efficiencies are difficult to interpret. The strangest correlation (p<0.001) was found between photosynthetic efficiency 1 (um $CO_2/(h \times mg \text{ chlorophyll a}))$ and TIC. This was a positive correlation in which high TIC concentrations in the region of the estuary were found where efficiency was high at times. Other correlations concerning efficiencies were significant at the p<0.05 level but not at the p<0.01 level. Given the general lack of strong correlation and lack of correspondence between correlations with the two efficiencies, we refuse to develop inferences concerning these parameters.

CONCLUSIONS

This report includes the most complete description of a blue-green algal bloom on the Neuse River yet published. The blue-green algal bloom during the summer of 1983 began to develop in July and continued into September. High densities of <u>Microcystis aeruginosa</u>, the dominant organism were found at times from Seven Springs to Street's Ferry Bridge, spanning over 100 km of the lower Neuse. The bloom was most intense at Fort Barnwell, but scums formed over the entire span of the bloom. Chlorophyll a concentrations peaked at approximately 1500 ug/liter, with densities of nearly 5,000 million <u>M. aeruginosa</u> cells/liter. Few other blue-green algal species were found in our samples, although others sampling the Neuse at that time found greater diversity of blue-green algae (NCDNRCD 1984). In the region between Seven Springs and Fort Barnwell, eukaryotic algae contributed significantly to algal biomass. Overall though, the algal bloom of 1983 was dominated by <u>M. aeruginosa</u> and was extensive in both time and space.

The bloom's development was associated with the low flow conditions on the Neuse resulting from lack of rainfall and high summer evapotranspiration rates leading to low water influx to the river. No blue-green algae were found in samples from Goldsboro, indicating that densities there were below our limits of detection. Algal biomass generally increased downriver and reached its maximum in the region where the river widens and deepens (Fort Barnwell) resulting in a decrease in velocity (Christian et al. 1986). The bloom persisted for several weeks in this region, declining only with the shorter days and colder temperatures of September and the occurrence of a rainstorm that may have washed algae farther downstream. The bloom declined between Fort Barnwell and Cowpen Landing, although apparently healthy algae were found in the latter region. Details regarding the sedimentation of dead algae and the rates of decomposition during the bloom's decline are unknown. By the time water reached the estuarine region near New Bern, the blue-green algal bloom was no longer apparent.

At the head of the estuary a second bloom occurred. This was dominated by eukaryotic chrysophytes. The chlorophyll <u>a</u> concentrations near New Bern exceeded those of recent years. The link between the primary, riverine bloom and this secondary, estuarine bloom is tenuous however. Nutrient concentrations did increase just upstream from the estuary, but these increases could be ascribed to paper and pulp mill effluent as well as the decomposition and mineralization from the riverine bloom. Also, the nearby Pamlico River estuary, whose tributary did not have a blue-green algal bloom, demonstrated high chlorophyll <u>a</u> concentrations during this time.

Inorganic forms of nitrogen and phosphorus decreased from upriver down. Total inorganic carbon increased in the lower reach of the river. Of the three elements, nitrogen concentrations showed the closest association with the bloom. Potentially limiting concentrations of nitrogen were found during a short time near and below the peak of the bloom (Paerl 1987). There is little evidence that any of these three elements could limit the bloom's development. There was evidence, based on nutrient ratios, that nitrogen was closer to becoming limiting than phosphorus.

The paper and pulp mill above New Bern was shown to influence nutrient concentrations. The effluent of the mill dramatically increased nitrogen concentrations in the river. Phosphorus concentrations rose to a lesser extent. Also, the dark color of the effluent may have retarded primary productivity by increasing light attenuation. Thus, at the low flow conditions that existed, the mill's effluent had significant local impacts on the river. The importance of these impacts downstream are unknown.

Lastly, river flow was extremely low for a long time during the summer of 1983. Flow at Kinston below 500 cfs was sustained for about 40 days. Low flows have occurred in summer of more recent years, but they have not been maintained as low for as long as in 1983. These low flow conditions appear to be a major element in promoting bloom formation (Christian et al. 1986). High spring flow has also been implicated as a causative agent in summer bloom formation (Paerl 1987). The mechanisms for this are not as well developed as for the low flow hypothesis, but a correlation appears to exist. It is apparent, though, that a variety of factors must combine n the appropriate way to allow for bloom development. These factors include at least availability of nutrients and light, temperature and other physical conditions which support active and sustained growth of the bluegreen algae.

LITERATURE CITED

American Public Health Association. 1980. Standard methods for the examination of water and wastewater. New York. 1134 pp.

Christian, R.R., D.W. Stanley, and D.A. Daniel. 1984. Microbiological changes occurring at the freshwater-seawater interface of the Neuse River Estuary, North Carolina. pp. 349-365 In V.S. Kennedy (ed.), The Estuary as a Filter. Academic Press, New York.

Christian, R.R., W.L. Bryant, Jr., and D.W. Stanley. 1986. The relationship between river flow and <u>Microcystis aeruginosa</u> in the Neuse River, North Carolina. University of North Carolina Water Resources Research Institute Report No. 223. Raleigh. 100 pp.

Dougenik, J.A. and D.E. Sheehan. 1979. SYMAP users reference manual, Version 5.20. Laboratory for Computer Graphics and Spatial Analysis, Harvard University Graduate School of Design. Cambridge, Massachusetts.

Fisher, T.R., P.R. Carlson, and R.T. Barber. 1982a. Sediment nutrient regeneration in three North Carolina estuaries. Estuarine and Coastal Shelf Science 14:101-116.

Fisher, T.R., P.R. Carlson, and R.T. Barber. 1982b. Carbon and nitrogen primary productivity in three North Carolina estuaries. Estuarine and Coastal Shelf Science 15:621-644.

Harned, D.A. 1980. Water quality in the Neuse River, North Carolina. U.S. Geological Survey. Water Resources investigation 80-36. 88 pp.

Hobbie, J.E. and N.W. Smith. 1975. Nutrients in the Neuse River Estuary, North Carolina. UNC Sea Grant Publication UNC-SG-75-21. Raleigh.

Imberger, J., T. Berman, R.R. Christian, E.B. Sherr, D.W. Whitney, L.R. Pomeroy, R.G. Wiegert, and W.J. Wiebe. 1983. The influence of water motion on the distribution and transport of materials in a salt-marsh estuary. Limnol. Oceanogr. 28:201-214.

Matson, E.A., M.M. Brinson, D.D. Cahoon, and G.J. Davis. 1983. Biogeochemistry of the sediments of the Pamlico and Neuse River Estuaries, North Carolina. University of North Carolina Water Resources Research Institute Report No. 191. Raleigh. 103 pp.

N.C. Department of Natural Resources and Community Development. 1980. Working paper: Neuse River investigation, 1979. Raleigh. 214 pp.

N.C. Department of Natural Resources and Community Development. 1982. Phytoplankton and nutrient study of the Neuse River: 1980-1981. Raleigh. 163 pp.

N.C. Department of Natural Resources and Community Development. 1983. Nutrient management strategy for the Neuse River Basin. Report No. 83-05. Raleigh. 29 pp.

N.C. Department of Natural Resources and Community Development. 1984. 1983 Neuse River phytoplankton summary. Report No. 84-06. 40 pp.

Paerl, H.W. 1983a. Factors regulating nuisance blue-green algal blooms potentials in the lower Neuse River, North Carolina. University of North Carolina Water Resources Research Institute Report No. 188. Raleigh.

Paerl, H.W. 1983b. Partitioning of CO_2 fixation in the colonial cyanobacterium <u>Microcystis aeruginosa</u>: mechanism promoting formation of surface scums. Appl. Environ. Microbiol. 46:252-259.

Paerl, H.W. 1984. The effect of salinity on blue-green algal blooms potential in the Neuse River Estuary. UNC Sea Grant Publication UNC-SG-WP-84-1. Raleigh.

Paerl, H.W. 1987. Dynamics of blue-green algal (<u>Microcystis aeruginosa</u>) blooms in the lower Neuse River, North Carolina: <u>causative factors and</u> potential controls. University of North Carolina Water Resources Research Institute Report No. 229. Raleigh. 164 pp.

Paerl. H.W. and J.F. Ustach. 1982. Blue-green algal scums: an explanation for their occurrence during freshwater blooms. Limnol. Oceanogr. 21:212-217.

Paerl, H.W. and N.D. Bowles. 1987. Dilution bioasseys: their application to assessments of nutrient limitation in hypereutrophic waters. Hydeobiologia 146:265-273.

Paerl, H.W., P.T. Bland, N.D. Bowles, and M.E. Haibach. 1985. Adaptation to high-intensity, low-wavelength light among surface blooms of the cyanobacterium <u>Microcystis aeruginosa</u>. Appl. Environ. Microbiol. 49:1046-1052.

Smith, S.V. 1984. Phosphorus versus nitrogen limitation in the marine environment. Limnol. Oceanogr. 29:1149-1160.

Solorzano, L. 1969. Determination of ammonia in natural waters by the phenylhypochlorite method. Limnol. Oceanogr. 14:799-801.

Stanley, D.W. 1983. Nitrogen cycling and phytoplankton growth in the Neuse River, North Carolina. University of North Carolina Water Resources Research Institute Report No. 204. Raleigh. 85 pp.

Stanley, D.W. 1984. Water quality in the Pamlico River Estuary - 1983. Institute for Coastal and Marine Resources Technical Report No. 84-04. East Carolina University, Greenville, North Carolina. 66 pp. Stanley, D.W. and R.R. Christian. 1984. Nutrients in estuaries: research needs and priorities. pp. 203-219. In B.J. Copeland, K.Hart, N. Davis, and S. Friday (eds.). Research for managing the Nations estuaries. U.N.C. Sea Grant Publication 84-08. Raleigh. 420 pp.

Steemann-Nielsen, E. 1952. The use of radioactive carbon (14-C) for measuring organic carbon production in the sea. J. Cons. Expl. Mer. 18:117-140.

Strickland, D.H. and T.R. Parsons. 1972. A practical handbook of seawater analysis. J. Fish. Res. Bd. Canada 167:1-311.

United States Environmental Protection Agency. 1979. Methods for chemical analyses of water and wastes. EPA-600/4-79-020.

Station							Date	:					
-	23A	24A	25A	26A	28A	30A	1S	3S	5S	7S	9S	13S	19S
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	40 28 23 15 26 59 460 360 47 94 768 44 18 4	55 65 <1 30 34 82 77 168 80 208 73 97 30 104 2	<1 45 28 17 21 78 54 68 216 38 22 40 4 11 <1	33 56 10 7 22 40 65 126 111 288 40 37 30 4 2	112 141 8 24 46 64 213 67 40 16 8 8 8 8 8 <1	61 83 11 23 88 1541 68 38 22 26 17 19 29 16	82 43 19 8 29 44 341 103 17 13 59 97 26 10 2	95 68 36 18 130 95 24 37 30 10 9 4 4 <1	72 37 13 29 152 64 16 42 17 5 <1 7 11 4 2	87 48 46 30 43 160 1260 56 2 <1 2 <1 2 1 2 1	56 58 31 18 32 42 34 21 <1 18 6 1 4 8 1	32 53 40 21 117 146 75 32 11 11 18 2 6 15 <1	24 78 29 20 60 111 16 6 3 12 7 <1 <1 <1 3

Appendix A. Chlorophyll a concentrations (ug/l) at Neuse River stations sampled between 23 August (23A) and 19 September (19S), 1983.

,

.

Appendix B. Phytoplankton wet weight biomass (mg/l) at Neuse River stations sampled between 23 August (23A) and 19 September (19S), 1983.

Station	L						Dat	e					
	23A	24A	25A	26A	28A	30A	1S	3S	55	7S	9S	135	195
10 11 12 13 14 15 1 16 5 17 18 19 20 2 21 9 22 23 24	1.03 0.50 0.09 0.15 4.11 4.75 9.01 1.56 2.77 0.16 5.57 9.08 6.65 0.08 0.08		2.22 1.55 0.11 0.69 1.24 26.40 0.49 12.29 17.88 22.54 6.16 0.07 0.05 1.99 0.22		$\begin{array}{c} 2.43\\ 2.32\\ 0.15\\ 0.23\\ 8.18\\ 14.01\\ 162.44\\ 17.58\\ 9.09\\ 1.40\\ 1.64\\ 0.66\\ 0.74\\ 0.05\\ 0.61\end{array}$		$\begin{array}{r} 4.80\\ 0.91\\ 0.93\\ 0.26\\ 6.64\\ 10.52\\ 106.97\\ 22.73\\ 0.01\\ 1.60\\ 12.56\\ 1.14\\ 0.49\\ 0.28\\ 0.13\end{array}$		53.198.020.984.574.729.1422.2012.123.341.760.430.761.220.150.38		99.18 33.99 0.82 1.09 2.29 2.97 0.92 0.54 2.32 0.08 0.45 0.95 0.16 0.03	$\begin{array}{c} 42.80\\ 1.31\\ 3.92\\ 1.49\\ 10.49\\ 22.64\\ 0.88\\ 0.77\\ 11.78\\ 3.04\\ 1.57\\ 3.16\\ 0.62\\ 0.87\\ 0.43\\ \end{array}$	$\begin{array}{c} 0.91\\ 2.25\\ 0.19\\ 0.26\\ 0.21\\ 14.96\\ 1.45\\ 0.48\\ 1.03\\ 3.39\\ 3.40\\ 0.35\\ 0.62\\ 0.07\\ 0.10\\ \end{array}$

Station	L						Dat	e					
	23A	24A	25A	26A	28A	30A	1S	35	5S	7S	95	135	195
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1.03 0.50 0.09 0.13 0.21 0.18 0.20 0.74 2.77 0.16 0.69 0.53 0.19 0.08 0.08		2.22 1.55 0.11 0.29 0.14 0.55 0.49 1.26 0.91 3.95 0.16 0.07 0.05 1.99 0.22		$\begin{array}{c} 2.43\\ 2.32\\ 0.13\\ 0.18\\ 0.12\\ 0.11\\ 0.24\\ 4.27\\ 1.98\\ 1.40\\ 1.64\\ 0.66\\ 0.74\\ 0.05\\ 0.61\\ \end{array}$		4.80 0.91 0.49 0.23 0.15 0.18 0.34 0.10 0.01 1.60 1.57 1.14 0.49 0.28 0.13		53.19 8.02 0.22 3.10 4.72 1.72 0.23 5.69 2.14 1.76 0.43 0.76 1.22 0.15 0.38		99.18 33.99 0.13 0.19 1.06 2.04 0.31 0.50 2.31 0.07 0.45 0.95 0.10 0.03	42.80 1.31 3.92 0.20 0.38 0.98 0.59 0.77 0.26 1.32 1.54 2.75 0.49 0.83 0.43	$\begin{array}{c} 0.91 \\ 2.25 \\ 0.12 \\ 0.22 \\ 0.14 \\ 1.23 \\ 1.05 \\ 0.25 \\ 0.94 \\ 0.29 \\ 3.19 \\ 0.23 \\ 0.60 \\ 0.07 \\ 0.10 \end{array}$

Appendix D. Wet weight biomass (mg/l) of blue-green algae at Neuse River stations sampled between 23 August (23A) and 19 Setember (19S), 1983.

Statio	n						Date					<u> </u>	
	23A	24A	25A	26A	28A	30A	15	35	5\$	7S	9S	135	19S
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	$\begin{array}{c} 0.00\\ 0.00\\ 0.02\\ 3.90\\ 14.56\\ 58.81\\ 0.83\\ 0.00\\ 0.00\\ 24.88\\ 98.55\\ 6.46\\ 0.00\\ 0.00\\ 0.00 \end{array}$		$\begin{array}{c} 0.00\\ 0.00\\ 0.40\\ 1.10\\ 25.85\\ 0.00\\ 11.03\\ 16.96\\ 18.59\\ 6.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$		$\begin{array}{c} 0.00\\ 0.00\\ 0.02\\ 0.05\\ 8.06\\ 13.89\\ 162.20\\ 13.30\\ 7.11\\ 0.00\\ 0$		$\begin{array}{c} 0.00\\ 0.00\\ 0.44\\ 0.03\\ 6.49\\ 10.34\\ 106.63\\ 22.63\\ 0.00\\ 0.00\\ 10.99\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$		$\begin{array}{c} 0.00\\ 0.00\\ 0.76\\ 1.47\\ 0.00\\ 7.42\\ 21.97\\ 6.43\\ 1.20\\ 0.00$		$\begin{array}{c} 0.00\\ 0.00\\ 0.90\\ 1.23\\ 0.93\\ 0.61\\ 0.03\\ 0.01\\ 0.01\\ 0.00\\ 0.00\\ 0.06\\ 0.00\\ 0.00\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 1.29\\ 10.11\\ 21.67\\ 0.29\\ 0.00\\ 11.53\\ 1.72\\ 0.03\\ 0.41\\ 0.13\\ 0.03\\ 0.00\\ \end{array}$	0.00 0.07 0.05 0.07 13.73 0.40 0.23 0.09 3.10 0.21 0.12 0.12 0.01 0.00 0.00

34 B.

Appendix E.	Phytoplankton species compose data for the Neuse River, 23 "Cell type" is a code number	sition, cell density, and biomass August - 19 September, 1983. used in our laboratory to facil-
	itate computer computations	of algal density and biomass.
	Class 1 = Bacillariophyceae	Class 6 = Euchlorophyceae
	Class 2 = Chlorophyceae	Class 7 = Euglenophyceae
	Class 3 = Chrysophyceae	Class $8 = Haptophyceae$
	Class $4 = Cyanophyceae$	Class $9 = Xanthophyceae$
	Class 5 = Dinophyceae	Class 10= Unknown Cell Types

Date	Station	Cell Type	Identification	Class	Density (cells/ml)	Biomass (ug/l)
23 Aug	10	300	Calvcomonas ovalis	3	1995	220
23 Aug	10	80	Gumpodinium sp	5	57	1/5
23 Aug	10	100	Gymnodinium sp.	5	323	627
23 Aug	10	72	Cyclotella sp	1	19	7
23 Aug	10	98	Prorocentrum minimum	<u> </u>	19	, 11
23 Aug	11	296	Gympodinium danicans	5	47	193
23 Aug	11	300	Calvcomonas ovalis	3	2637	290
23 Aug	11	98	Prorocentrum minimum	5	23	13
23 Aug	12	64	Unknown #64	3	213	12
23 Aug	12	300	Calycomonas ovalis	3	166	18
23 Aug	12	6	Unknown #6	2	95	17
23 Aug	12	10	Scenedesmus sp.	2	23	14
23 Aug	12	399	Navicula sp.	1	23	30
23 Aug	13	300	Calycomonas ovalis	3	71	8
23 Aug	13	6	Unknown #6	2	1591	277
23 Aug	13	126	Navicula sp.	1	47	47
23 Aug	13	444	Epithemia sp.	1	23	6
23 Aug	13	10	Scenedesmus sp.	2	23	14
23 Aug	13	268	Scenedesmus sp.	2	23	31
23 Aug	13	438	Cyclotella sp.	1	71	25
23 Aug	13	445	Microcystis aeruginosa	4	118	4
23 Aug	13	40	Anabaena sp.	4	1425	19
23 Aug	14	446	Microcystis aeruginosa	4	114040	3877
23 Aug	14	242	Crucigenia rectangulari.	<u>s</u> 2	213	83
23 Aug	14	41	Stichococcus sp.	2	3	0
23 Aug	14	10	Scenedesmus sp.	2	23	14
23 Aug	14	438	Cyclotella sp.	1	23	8
23 Aug	14	40	Anabaena sp.	4	1568	20
23 Aug	14	191	Scenedesmus quadricauda	2	71	50
23 Aug	14	6	Unknown #6	2	332	58
23 Aug	14	49	Actinastrum hantzschii	2	95	26
23 Aug	15	446	Microcystis aeruginosa	4	427649	14540
23 Aug	15	64	Unknown #64	3	142	8
23 Aug	15	268	Scenedesmus sp.	2	23	31
23 Aug	15	434	Pealastrum sp.	2	190	19
ZJ AUQ	15	325	FUNCTIA SD.	7	23	115

Appendix E,	continued		i se		
Date Sta	tion Cell Typ	e Identification	Clas	S Density (cells/ml)	Biomass (ug/l)
		- 1			
23 Aug 1	5 40	Anabaena sp.	4	1853	24
23 Aug I	6 446	Microcystis aeruginosa	4	1/29600	58806
23 Aug I	6 64	Unknown #64	3	126	/
23 Aug 1	6 438	Cyclotella sp.	1	285	99
23 Aug 1	6 263	Scenedesmus sp.	2	31	42
23 Aug 1	6 264	Scenedesmus sp.	2	63	50
23 Aug 1	446	Microcystis aeruginosa	4	24328	827
23 Aug 1	7 103	Cyclotella sp.	1	47	1
23 Aug 1	7 268	Scenedesmus sp.	2	142	188
23 Aug 1	7 196	Scenedesmus obliquus	2	95	29
23 Aug 1	7 442	Pediastrum biradiatum	2	2755	416
23 Aug 1	7 197	Unknown #197	10	47	91
23 Aug 1	7 147	Stauroneis sp.	1	47	25
23 Aug 1	8 440	Nitzschia sp.	1	95	96
23 Aug 1	8 6	Unknown #6	2	217056	37768
23 Aug 1	8 438	Cyclotella sp.	1	190	66
23 Aug 1	8 64	Unknown #64	3	190	11
23 Aug 1	8 408	Gyrosigma sp.	1	95	2458
23 Aug 1	8 268	Scenedesmus sp.	2	95	125
23 Aug 1	9 6	Unknown #6	2	278447	48450
23 Aug 1	9 126	Navicula sp.	1	95	95
23 Aug 1	9 438	Cyclotella sp.	1	95	33
23 Aug 1	9 196	Scenedesmus obliquus	2	95	29
23 Aug 2	0 446	Microcystis aeruginosa	4	731756	24880
23 Aug 2	0 201	Navicula sp.	1	71	52
23 Aug 2	0 124	Gomphonema sp.	1	23	25
23 Aug 2	0 408	Gyrosigma sp.	1	23	614
23 Aug 2	1 446	Microcystis aeruginosa	4	2898510	98549
23 Aug 2	1 6	Unknown #6	2	237	41
23 Aug 2	1 46	Navicula sp.	1	59	67
23 Aug 2	1 402	Cocconeis sp.	1	118	402
23 Aug 2	1 126	Navicula sp.	1	59	59
23 Aug 2	2 446	Microcystis aeruginosa	4	190066	6462
23 Aug 2	2 126	Navigula sp	1	57	57
23 Aug 2	2 49	Actinastrum hantzschij	2	19	5
23 Aug 2	2 130	Cumaton leura sp	1	19	100
23 Aug 2	2 6	Unknown #6	2	200	100
23 Aug 21	2 268	Scanadasmus sp	2	209	25
23 Aug 2	3 6	Unknown #6	2	2765	100
23 Aug 2	3 443	Spiroqura sp	2	2/55	480
23 Aug 2	1 108	Unknown #109	10	15	90
23 Aug 2	1 324	Bacillaria paradava	10	15	49
25 Aug 10	300	Calucomonas amilia	1	15	33
25 Aug 10	206	Cumpodinium danian	3	7049	1/5
25 Aug 10	290	Bronocontaria minimum	5	345	1404
20 Aug Il	50	FIOLOCENCIUM MINIMUM	5	69	39

Appendix	Ε,	conti	inued
----------	----	-------	-------

Date	Station	Cell Type	Identification	Class	Density (cells/ml)	Biomass (ug/l)
25 Aug	11	296	Gymnodinium danicans	5	323	1313
25 Aug	11	300	Calycomonas ovalis	3	1976	217
25 Aug	11	98	Prorocentrum minimum	5	38	21
25 Aug	12	64	Unknown #64	3	228	13
25 Aug	12	300	Calycomonas ovalis	3	190	21
25 Aug	12	438	Cyclotella sp.	1	95	33
25 Aug	12	268	Scenedesmus sp.	2	19	25
25 Aug	13	445	Microcystis aeruginosa	4	11708	398
25 Aug	13	234	Navicula sp.	1	38	56
25 Aug	13	235	Unknown #235	10	114	34
25 Aug	13	377	Scenedesmus sp.	2	76	38
25 Aug	13	268	Scenedesmus sp.	2	114	150
25 Aug	13	6	Unknown #6	2	608	106
25 Aug	13	438	Cyclotella sp.	1	76	26
25 Aug	13	41	Stichococcus sp.	2	2	1
25 Aug	14	446	Microcystis aeruginosa	4	32311	1099
25 Aug	14	41	Stichococcus sp.	2	3	1
25 Aug	14	6	Unknown #6	2	1330	232
25 Aug	14	120	<u>Selenastrum</u> sp.	2	114	2
25 Aug	14	438	<u>Cyclotella</u> sp.	1	19	7
25 Aug	14	268	Scenedesmus sp.	2	38	50
25 Aug	14	49	Actinastrum hantzschii	2	171	47
25 Aug	15	446	Microcystis aeruginosa	4	1710	258
25 Aug	15	191	Scenedesmus quadricauda	1 2	63	45
25 Aug	15	268	<u>Scenedesmus</u> sp.	2	95	125
25 AUG	15	6	Unknown #6	2	190	33
25 Aug	15	41	Stichococcus sp.	2	31	_1
25 Aug	15	438	Cyclotella sp.	Ţ	158	55
25 Aug	15	3//	Scenedesmus sp.	2	31	16
25 Aug	15	49	Accinastrum nantzschil	2	158	44
25 Aug	16	203	Scenedesinus sp.	2	51	75
25 Aug	16	200	<u>Scelledesillus</u> sp.	2	76	100
25 Aug	16	64	Unknown #64	2	200	46
25 Aug	16	04 40	Ulikilowii #64	3	122	63
25 Aug	16	49	Accillasci ulli Hallezsci III	2	133	37
25 Aug	16	442	Seenedeamia an	2	027	95
25 Aug	16	278 438	<u>Scenedesillus</u> sp.	2	19	26
25 Aug	16	98	Prorocentrum minimum	۲ ۲	10	11
25 Aug	16	352	Pediastrum sp	2	76	15
25 Aug	17	445	Microcystis aeruginosa	2 2	323113	10986
25 Aug	17	201	Navicula sp.	1	38	28
25 Aug	17	64	Unknown #64	3	57	3
25 Aua	17	147	Stauroneis sp.	ĩ	19	10
25 Aug	17	408	Gyrosigma sp.	1	38	983

.

.

•

Date S	Station	Cell Type	Identification	(Class	Density (cells/ml)	Biomass (ug/l)
25 Aug 25	17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	438 442 437 264 446 438 234 6 64 442 268 201 408 317 430 445 408 258 49 126 445 442 201 377 446 201 377 446 201 377 446 201 374 443 126 374 443 126 374 443	Cyclotella sp. Pediastrum biradiatum Microcystis sp. Scenedesmus sp. Microcystis aeruginosa Cyclotella sp. Navicula sp. Unknown #6 Unknown #64 Pediastrum biradiatum Scenedesmus sp. Navicula sp. Gyrosigma sp. Synedra sp. Cocconeis sp. Microcystis aeruginosa Gyrosigma sp. Pediastrum tetras Actinastrum hantzschii Navicula sp. Microcystis aeruginosa Pediastrum biradiatum Navicula sp. Microcystis aeruginosa Pediastrum biradiatum Navicula sp. Scenedesmus sp. Microcystis aeruginosa Navicula sp. Surirella sp. Cocconeis sp. Calycomonas ovalis		12424112322111141221421241111211113	(cells/ml) 95 1197 1406 19 498924 71 23 95 332 760 23 23 23 23 23 23 23 23 23 23	(ug/1) 33 181 48 15 16963 25 35 17 19 115 31 17 614 17 19 18585 3932 17 5 38 52 86 28 10 5945 28 42 38 239 38 69 135 15 737
 28 Aug 	10 10 11 11 11 11 12 12 12	102 80 98 300 64 102 80 191 300 103	Cyclotella sp. Gymnodinium sp. Prorocentrum minimum Calycomonas ovalis Unknown #64 Cyclotella sp. Gymnodinium sp. Scenedesmus quadricauda Calycomonas ovalis Cyclotella sp.	n-	1 5 5 3 3 1 5 2 3 1	3183 617 190 8616 2576 1098 422 38 836 95	19 1569 106 948 147 7 1073 27 92 2

Date	Station	Cell Type	Identification	Class	Density (cells/ml)	Biomass (ug/l)
28 Aug	12	64	Unknown #64	3	114	7
28 Aug	12	445	Microcystis aeruginosa	4	437	15
28 Aug	13	235	Unknown #235	10	19	6
28 Aug	13	191	Scenedesmus quadricauda	a 2	57	40
28 Aug	13	300	Calycomonas ovalis	- 3	95	10
28 Aug	13	41	Stichococcus sp.	2	5	1
28 Aug	13	445	Microcystis aeruginosa	4	1463	50
28 Aug	13	49	Actinastrum hantzschii	2	285	79
28 Aug	14	446	Microcystis aeruginosa	4	231881	7884
28 Aug	14	64	Unknown #64	3	57	3
28 Aug	14	445	Microcystis aeruginosa	4	5283	180
28 Aug	14	49	Actinastrum hantzschii	2	228	63
28 Aug	14	438	Cyclotella sp.	1	57	20
28 Aug	14	264	Scenedesmus sp.	2	19	15
28 Aug	14	196	Scenedesmus obliquus	2	19	6
28 Aug	14	235	Unknown #235	10	19	6
28 Aug	14	6	Unknown #6	2	304	53
28 Aug	15	446	Microcystis aeruginosa	4	408643	13894
28 Aug	15	64	Unknown #64	3	285	16
28 Aug	15	438	Cyclotella sp.	1	237	82
28 Aug	15	6	Unknown #6	2	237	41
28 Aug	16	446	Microcystis aeruginosa	4	4770670	162202
28 Aug	17	446	Microcystis aeruginosa	4	391537	13312
28 Aug	17	64	Unknown #64	3	95	5
28 Aug	17	408	<u>Gyrosigma</u> sp.	1	76	1966
28 Aug	17	438	<u>Cyclotella</u> sp.	1	76	26
28 Aug	17	199	<u>Surirella</u> sp.	1	19	1515
28 Aug	17	130	Cymatopleura sp.	1	19	100
28 Aug	17	1	Pediastrum duplex	2	589	589
28 Aug	1/	147	Stauroneis sp.	1	57	31
28 AUG	18	446	Microcystis aeruginosa	4	209073	7108
28 Aug	18	363	Unknown #363	10	19	249
28 Aug	18	408	Gyrosigma sp.	1	38	983
28 AUG	18	201	Navicula sp.	Ţ	38	28
28 Aug	10	268	Scenedesmus sp.	2	/6	100
28 Aug	10	273	Unknown #2/3	1	19	605
20 Aug	10	223	<u>Eunotia</u> sp.	1	19	100
20 Aug	19	108	Cymacopieura sp.	1	19	100
20 Aug 28 Aug	19	254	<u>Gyrosryna</u> sp.	⊥ 2	19	492
28 Aug	19	201 72	Cyclotella en	ے 1	10	7
28 2110	19	1	Pediastrum dupley	2	646	646
28 Aug	19	259	Surirella sp	1	19	125
28 Aug	19	201	Navicula sp.	1	19	14
28 Aug	20	201	Navicula sp.	ī	38	28

c

,

Date	Station	Cell Type	Identification	Class	Density (cells/ml)	Biomass (ug/l)
28 Aug	20	31	Scenedesmus sp.	2	19	14
28 Aug	20	223	Eunotia sp.	1	19	13
28 Aug	20	130	Cymatopleura sp.	1	19	100
28 Aug	20	408	Gyrosigma sp.	1	57	1475
28 Aug	20	440	Nitzschia sp.	1	19	19
28 Aug	20	8	Crucigenia sp.	2	19	8
28 Aug	21	49	Actinastrum hantzschii	2	76	21
28 Aug	21	201	Navicula sp.	1	38	28
28 Aug	21	376	Unknown #376	10	19	122
28 Aug	21	408	Gyrosigma sp.	1	19	492
28 Aug	22	201	Navicula sp.	1	118	87
28 Aug	22	408	Gyrosigma sp.	1	23	614
20 Aug	22	49	Actinastrum nantzschil	2	47	13
28 Aug	23	201	Navi gula go	5	47	27
28 Aug	23	201	Actinastrum hantzachii	2	10	42
28 Aug	24	49	Actinastrum hantzschij	2	19	5
28 Aug	24	201	Navicula sp	1	57	12
28 Aug	24	258	Pediastrum tetras	2	19	42
28 Aug	24	430	Cocconeis sp.	1	38	30
28 Aug	24	408	Gyrosigma sp.	1	19	492
28 Aug	24	440	Nitzschia sp.	1	38	38
1 Sep	10	300	Calvcomonas ovalis	3	13542	1490
1 Sep	10	80	Gymnodinium sp.	5	1267	3218
1 Sep	10	6	Unknown #6	2	1029	179
1 Sep	10	98	Prorocentrum minimum	5	158	89
1 Sep	11	300	Calycomonas ovalis	3	7331	806
1 Sep	11	64	Unknown #64	3	882	50
1 Sep	12	445	Microcystis aeruginosa	4	12924	439
1 Sep	12	300	Calycomonas ovalis	3	997	110
1 Sep	12	235	Unknown #235	10	190	57
1 Sep	12	6	Unknown #6	2	2518	438
1 Sep	12	64	Unknown #64	3	142	8
1 Sep	12	268	Scenedesmus sp.	2	190	250
1 Sep	12	264	Scenedesmus sp.	2	47	37
1 Sep	12	196	Scenedesmus obliquus	2	47	196
1 Sep	13	6	Unknown #6	2	2584	450
I Sep	13	10	Scenedesmus sp.	2	57	33
1 Sep	13	235	Unknown #235	10	76	23
1 Sep	13	264	CHEOOCOCCUS sp.	4	76	10
1 Sep	13	204	Stichogoggia	2	57	45
1 Sep	13	269	Sconodosmus sp.	2	2	1
1 Sep	13	200	Anabaena en	2	570	15
1 Sep	13	90	Crucidenia sp.	4	10	0
T DCD	10	0	orderigenita sp.	2	19	0

55

Date	Station	Cell Type	Identification	Class	Density (cells/ml)	Biomass (ug/l)
1 Sep	13	445	Microcystis aeruginosa	4	361	12
1 Sep	13	313	Unknown #314	10	323	1
1 Sep	13	300	Calycomonas ovalis	3	57	6
1 Sep	14	438	<u>Cyclotella</u> sp.	1	171	59
1 Sep	14	6	Unknown #6	2	209	36
1 Sep	14	22	<u>Cyclotella</u> sp.	1	38	60
1 Sep	14	300	Calycomonas ovalis	3	19	2
	14	445	Microcystis aeruginosa	· · · ·	4 /60	26
	14	49	Actinastrum nantzschil	2	10	31
	14	120	Selenastrum sp.	2	204106	10240
1 Sep	15	440	Microcystis aeruginosa	4	304100 122	10340
1 Sep	15	430	Upknown #6	2	133	140
1 Sep	15	64	Unknown #64	2	513	29
1 Sep	15	272	Scanadasmus so	2	19	43
1 Sep	15	272	Scenedesmus sp	2	19	43
1 Sep	15	114	Eunotia sp.	1	19	14
1 Sep	15	201	Navicula sp.	1	19	15
1 Sep	16	64	$\frac{1}{1}$	3	570	33
1 Sep	16	446	Microcystis aeruginosa	4	3136090	106627
1 Sep	16	254	Scenedesmus sp.	2	190	29
1 Sep	16	191	Scenedesmus quadricauda	a 2	-95	67
1 Sep	16	10	Scenedesmus sp.	2	95	56
1 Sep	16	268	Scenedesmus sp.	2	95	125
1 Sep	17	446	Microcystis aeruginosa	4	665232	22618
1 Sep	17	49	Actinastrum hantzschii	2	47	13
1 Sep	17	268	Scenedesmus sp.	2	23	31
1 Sep	17	438	Cyclotella sp.	1	118	41
1 Sep	17	254	Scenedesmus sp.	2	23	4
1 Sep	17	40	Anabaena sp.	4	665	9
1 Sep	17	201	Navicula sp.	1	23	17
1 Sep	17	6	Unknown #6	2	380	66
1 Sep	18	438	<u>Cyclotella</u> sp.	1	23	8
1 Sep	19	197	Unknown #197	10	19	36
1 Sep	19	6	Unknown #6	2	76	13
1 Sep	19	49	Actinastrum hantzschii	2	19	5
1 Sep	19	374	Navicula sp.	1	19	9
1 Sep	19	199	<u>Surirella</u> sp.	1	19	1545
1 Sep	20	408	<u>Gyrosigma</u> sp.	1	57	1475
1 Sep	20	191	Scenedesmus quadricauda	2	38	27
1 Sep	20	49	Actinastrum hantzschil	2	5/	16
1 Sep	20	201	Navicula sp.	1 1	19	19
1 Sep	20	40	Navicula sp.	1	19	∠⊥ 10
	20	440	NILZSCIIIA Sp.	لم م	17 200110	10096
I Sep	20	440	MICTOCYSTIS aeruginosa	4	323113	TUARP

1

•

Appendix E, continued

Appendix	Ε,	conti	inued
----------	----	-------	-------

•

Date	Station	Cell Type	Identification	Class	Density (œlls/ml)	Biomass (ug/l)
1 Sep	21	10	Scenedesmus sp.	2	19	11
1 Sep	21	439	Navicula sp.	1	57	14
1 Sep	21	408	Gyrosigma sp.	1	38	983
1 Sep	21	252	Didymosphenia sp.	1	19	54
1 Sep	21	49	Actinastrum hantzschii	2	38	10
1 Sep	21	440	Nitzschia sp.	1	19	19
1 Sep	21	441	Neidium ladogense	1	19	46
1 Sep	22	254	Scenedesmus sp.	2	19	3
1 Sep	22	441	Neidium ladogense	1	19	46
1 Sep	22	197	Unknown #197	10	133	255
1 Sep	22	397	Unknown #397	10	19	176
1 Sep	22	201	Navicula sp.	1	19	14
1 Sep	23	439	Navicula sp.	1	19	6
1 Sep	23	441	Neidium ladogense	1	19	46
1 Sep	23	371	Pinnularia sp.	1	38	203
1 Sep	23	201	Navicula sp.	1	38	28
1 Sep	24	402	Cocconeis sp.	1	38	129
5 Sep	10	10	Scenedesmus sp.	2	38	22
5 Sep	10	64	Unknown #64	3	722	41
5 Sep	10	300	Calycomonas ovalis	3	2984	328
5 Sep	10	320	Unknown #320	5	266	52665
5 Sep	10	80	Gymnodinium sp.	5	38	97
5 Sep	11	300	Calycomonas ovalis	3	2299	253
5 Sep	11	64	Unknown #64	3	1007	57
5 Sep	11	118	Crucigenia tetrapedia	2	19	1
5 Sep	11	72	Cyclotella sp.	1	323	126
5 Sep	11	320	Unknown #320	5	38	7524
5 Sep	12	235	Unknown #235	10	63	19
5 Sep	12	191	Scenedesmus quadricauda	2	126	89
5 Sep	12	107	Chroococcus sp.	4	63	8
5 Sep	12	98	Prorocentrum minimum	5	63	35
5 Sep	12	450	Merismopaedia sp.	4	1267	22
5 Sep	12	300	Calycomonas ovalis	3	253	28
5 Sep	12	41	Stichococcus sp.	2	4	1
5 Sep	12	64	Unknown #64	3	63	4
5 Sep	12	446	Microcystis aeruginosa	4	21604	735
5 Sep	13	352	Pediastrum sp.	2	532	107
5 Sep	13	49	Actinastrum hantzschii	2	152	42
5 Sep	13	41	Stichococcus sp.	2	29	3
5 Sep	13	357	Scenedesmus sp.	2	76	153
5 Sep	13	191	Scenedesmus quadricauda	2	228	161
5 Sep	13	373	Gyrosigma sp.	1	76	2388
5 Sep	13	40	Anabaena sp.	4	3421	44
5 Sep	13	446	Microcystis aeruginosa	4	40218	1367

5Sep13445Microcystis aeruginosa41672575Sep1449Actinastrum hantzschii27912195Sep1472Cyclotella sp.1221865Sep1413Gyrosigma sp.2715Sep1472Cyclotella sp.1311225Sep14196Scenedesmus goldricauda231105Sep14196Scenedesmus guadricauda231225Sep14196Scenedesmus guadricauda2312045Sep141Pediastrum duplex29829825Sep151Pediastrum duplex26656655Sep15126Navicula sp.123245Sep15126Navicula sp.171285Sep15377Scenedesmus sp.22375Sep15373Gyrosigma sp.1237465Sep15242Crucigenia sp.171285Sep15373Gyrosigma sp.247635Sep15242Crucigenia sp.247635Sep16224Crucigenia sp.215725Sep1	 Date	Station	Cell Type	Identification (Class	Density (cells/ml)	Biomass (ug/l)
5 Sep1449Actinastrum hantischii27912195 Sep1472Cyclotella sp.1221865 Sep1414Stichcococus sp.2715 Sep14172Cyclotella sp.131125 Sep14196Sceneclesmus obliquus231105 Sep14196Sceneclesmus obliquus231225 Sep14196Sceneclesmus quadricauda231225 Sep14196Sceneclesmus quadricauda231225 Sep14196Sceneclesmus quadricauda231225 Sep14196Sceneclesmus quadricauda231225 Sep151Pediastrum biradiatum29829825 Sep151Stichcoccus sp.2515 Sep15126Navicula sp.123245 Sep15172Cyclotella sp.171285 Sep15373Sceneclesmus sp.223485 Sep15242Crucigenia rectangularis2955 Sep15242Crucigenia sp.1237465 Sep15268Sceneclesmus sp.219435 Sep16272Sceneclesmus sp.219435 Sep16272Sce	5 Sep	13	445	Microcystis aeruginosa	4	1672	57
5 Sep1472 $\overline{Cyclotella sp.}{1}$ 1221865 Sep1441Stichococcus sp.2715 Sep1472 $\overline{Cyclotella sp.}{1}$ 19529865 Sep14191Scenedesmus quadricauda231105 Sep14191Scenedesmus quadricauda231225 Sep14191Scenedesmus quadricauda231225 Sep14442Pediastrum biradiatum29829825 Sep14376Unknown #37610312045 Sep151Pediastrum duplex26656655 Sep15126Navicula sp.123245 Sep15127Cyclotella sp.17123465 Sep15357Scenedesmus sp.223485 Sep15357Scenedesmus sp.223485 Sep15373Gyrosigma sp.1171023465 Sep15242Crucigenia rectangularis2953755 Sep15242Crucigenia sp.11719195 Sep1626Navicula sp.119195 Sep16210Navicula sp.119195 Sep16226Scenedesmus sp.21943	5 Sep	14	49	Actinastrum hantzschii	2	791	219
5 Sep1441 $\overline{Strichococcus}$ sp.2715 Sep14373 $\overline{Gyrosigma}$ sp.19529865 Sep14196 $\overline{Sceneclesmus}$ obliquus231105 Sep14196 $\overline{Sceneclesmus}$ cuadricauda231225 Sep14191 $\overline{Sceneclesmus}$ cuadricauda231225 Sep14141 $\overline{Pediastrum}$ biradiatum29829825 Sep14376 $\overline{Unknown}$ #37610312045 Sep151 $\overline{Pediastrum}$ duplex26656655 Sep151 $\overline{Pediastrum}$ duplex26656655 Sep15197 $\overline{Unknown}$ #1971023465 Sep15197 $\overline{Unknown}$ #64316695 Sep15373Scenedesmus sp.2237465 Sep15373Scenedesmus sp.247635 Sep15268Scenedesmus sp.247635 Sep16212 $\overline{Scenedesmus}$ sp.219195 Sep16222 $\overline{Scenedesmus}$ sp.219435 Sep16212 $\overline{Scenedesmus}$ sp.219435 Sep16212 $\overline{Scenedesmus}$ sp.219435 Sep16222 $\overline{Scenedesmus}$ sp.21919	5 Sep	14	72	Cyclotella sp.	1	221	86
5 Sep14373 $\overline{Ovrosigma sp.}$ 19529865 Sep1472 $\overline{Ovcolotella sp.}$ 131125 Sep14196Scenedesmus duadricauda231105 Sep14191Scenedesmus duadricauda231225 Sep1414Pediastrum duplex29829825 Sep14376Unknown #37610312045 Sep151Pediastrum duplex26656655 Sep15126Navicula sp.123245 Sep15197Unknown #1971023465 Sep15377Scenedesmus sp.223465 Sep15377Scenedesmus sp.1237465 Sep15373Gvrosigma sp.1237465 Sep15373Scenedesmus sp.247635 Sep15242Crucigenia rectangularis295375 Sep16126Navicula sp.119195 Sep16272Scenedesmus sp.219435 Sep16126Navicula sp.119195 Sep16272Scenedesmus sp.219435 Sep16272Scenedesmus sp.219435 Sep16288Scenedesmus sp.2 </td <td>5 Sep</td> <td>14</td> <td>41</td> <td>Stichococcus sp.</td> <td>2</td> <td>7</td> <td>1</td>	5 Sep	14	41	Stichococcus sp.	2	7	1
5Sep1472 $\overline{Ovclotella}$ sp.131125Sep14196Scenedesmus obliquus231105Sep14191Scenedesmus obliquus231225Sep141Pediastrum biradiatum29181395Sep141Pediastrum biradiatum29829825Sep141Pediastrum oblex29829825Sep1541Stichococcus sp.2515Sep151Pediastrum oblex26656655Sep15126Navicula sp.123245Sep1517Cyclotella sp.123245Sep1572Cyclotella sp.123245Sep1572Cyclotella sp.123245Sep1573Gyrosigma sp.223485Sep15373Gyrosigma sp.223485Sep15242Crucigenia rectangularis295375Sep15242Crucigenia rectangularis295375Sep16126Navicula sp.119195Sep16272Scenedesmus sp.217425Sep1	5 Sep	14	373	Gyrosigma sp.	1	95	2986
5Sep14196Scenedesmus obliquus231105Sep14191Scenedesmus quadricauda231225Sep141Pediastrum biradiatum29181395Sep141Pediastrum duplex29829825Sep14376Unknown #37610312045Sep151Pediastrum duplex26656655Sep151Pediastrum duplex26656655Sep15126Navicula sp.123465Sep1572Cyclotella sp.171285Sep15373Scenedesmus sp.2237465Sep15373Gyrosigma sp.1237465Sep15242Crucigenia rectangularis295375Sep15242Crucigenia rectangularis295375Sep16126Navicula sp.119195Sep16272Scenedesmus sp.217635Sep1672Cyclotella sp.119195Sep1672Scenedesmus sp.219435Sep1619Actinastrum hantzschii276215Se	5 Sep	14	72	Cyclotella sp.	1	31	1.2
5Sep14191Scenedesmus quadricauda231225Sep14442Pediastrum biradiatum29181395Sep14376Unknown #37610312045Sep1541Stichococcus sp.2515Sep151Pediastrum duplex26656655Sep15126Navicula sp.123245Sep15197Unknown #1971023465Sep15357Scenedesmus sp.223485Sep15357Scenedesmus sp.223485Sep15373Gyrosigma sp.1237465Sep15242Crucigenia rectangularis295375Sep16212Scenedesmus sp.247635Sep16222Scenedesmus sp.157425Sep16272Scenedesmus sp.119195Sep1672Scenedesmus sp.219435Sep1672Scenedesmus sp.219255Sep1672Scenedesmus sp.219255Sep1628Unknown #328119385Sep17373 </td <td>5 Sep</td> <td>14</td> <td>196</td> <td>Scenedesmus obliquus</td> <td>2</td> <td>31</td> <td>10</td>	5 Sep	14	196	Scenedesmus obliquus	2	31	10
5 Sep14442Pediastrum biradiatum Pediastrum duplex29181395 Sep141Pediastrum duplex29829825 Sep1541Stichococcus sp.2515 Sep151Pediastrum duplex26656655 Sep151Pediastrum duplex26656655 Sep15126Navicula sp.123245 Sep1572Cyclotella sp.171285 Sep1572Cyclotella sp.171285 Sep15377Scenedesmus sp.223485 Sep15373Gyrosigma sp.1237465 Sep15242Crucigenia rectangularis295375 Sep15242Crucigenia sp.119195 Sep16126Navicula sp.117425 Sep16201Navicula sp.157425 Sep16210Navicula sp.119195 Sep1628Greendesmus sp.219435 Sep1628Greendesmus sp.219255 Sep16210Navicula sp.119195 Sep1628Greendesmus sp.219255 Sep1628Greendesmus sp.219	5 Sep	14	191	Scenedesmus quadricauda	2	31	22
5 Sep 14 1 Pediastrum duplex 2 982 982 5 Sep 14 376 Unknown #376 10 31 204 5 Sep 15 1 Stichocccus sp. 2 5 1 5 Sep 15 1 Pediastrum duplex 2 665 665 5 Sep 15 126 Navicula sp. 1 23 24 5 Sep 15 72 Cyclotella sp. 1 71 28 5 Sep 15 373 Scenedesmus sp. 2 23 48 5 Sep 15 373 Gyrosigma sp. 1 23 746 5 Sep 15 242 Crucigenia rectangularis 2 95 37 5 Sep 15 268 Scenedesmus sp. 2 47 63 5 Sep 16 126 Mavicula sp. 1 19 19 5 Sep 16 201 Navicula sp. 1 57 42 5 Sep 16 272 Scenedesmus sp. <	5 Sep	14	442	Pediastrum biradiatum	2	918	139
5Sep14376Unknown #37610312045Sep1541Stichococcus sp.2515Sep151Pediastrum duplex26656655Sep15126Navicula sp.123245Sep15197Unknown #1971023465Sep1572Cyclotella sp.171285Sep15377Scenedesmus sp.223485Sep15373Gyrosigma sp.1237465Sep15268Scenedesmus sp.247635Sep15268Scenedesmus sp.247635Sep16266Scenedesmus sp.119195Sep16261Navicula sp.157425Sep16272Scenedesmus sp.219435Sep1672Cyclotella sp.119195Sep1628Unknown #328119385Sep1628Scenedesmus sp.21421885Sep171Pediastrum duplex26886895Sep171Scenedesmus sp.21421885Sep171Scenedesmus sp.<	5 Sep	14	1	Pediastrum duplex	2	982	982
5 Sep1541Stichococcus sp.2515 Sep151Pediastrum duplex26656655 Sep15126Navicula sp.123245 Sep15197Unknown #1971023245 Sep1572Cyclotella sp.171285 Sep15357Scenedesmus sp.223485 Sep15373Gyrosigma sp.1237465 Sep15242Crucigenia rectangularis295375 Sep15242Crucigenia rectangularis295375 Sep15248Scenedesmus sp.247635 Sep16126Navicula sp.119195 Sep16201Navicula sp.157425 Sep16272Scenedesmus sp.219435 Sep1672Cyclotella sp.119195 Sep1619Navicula sp.119195 Sep16268Scenedesmus sp.219385 Sep1628Unknown #328119385 Sep16328Unknown #37610231535 Sep171Pediastrum duplex26686895 Sep1737Gyrosigma sp.11421478 <t< td=""><td>5 Sep</td><td>14</td><td>376</td><td>Unknown #376</td><td>10</td><td>31</td><td>204</td></t<>	5 Sep	14	376	Unknown #376	10	31	204
5Sep151Pediastrum duplex26656655Sep15126Navicula sp.123245Sep15197Unknown #1971023465Sep1572Cyclotella sp.171285Sep15377Scenedesmus sp.223485Sep1564Unknown #64316695Sep15242Crucigenia rectangularis295375Sep15242Crucigenia rectangularis295375Sep15246Scenedesmus sp.247635Sep16126Navicula sp.119195Sep16201Navicula sp.157425Sep16201Navicula sp.157225Sep1672Scenedesmus sp.219435Sep1619Navicula sp.119195Sep1619Navicula sp.119195Sep16268Scenedesmus sp.219255Sep16268Scenedesmus sp.2142195Sep16268Scenedesmus sp.2142195Sep171Pediastrum dup	5 Sep	15	41	Stichococcus sp.	2	5	1
5 Sep15126Navicula sp.123245 Sep15197Unknown #1971023465 Sep1572Cyclotella sp.171285 Sep15357Scenedesmus sp.223485 Sep1564Unknown #64316695 Sep15242Crucigenia rectangularis295375 Sep15242Crucigenia rectangularis295375 Sep15246Scenedesmus sp.247635 Sep15246Microcystis aeruginosa421810174155 Sep16201Navicula sp.119195 Sep16201Navicula sp.157425 Sep16272Scenedesmus sp.219435 Sep1672Cyclotella sp.119195 Sep1619Navicula sp.119195 Sep1628Unknown #328119385 Sep16288Unknown #328119385 Sep171Pediastrum duplex26886895 Sep17268Scenedesmus sp.21421885 Sep17268Scenedesmus sp.21421885 Sep17216Scenedesmus sp.2239 </td <td>5 Sep</td> <td>15</td> <td>1</td> <td>Pediastrum duplex</td> <td>2</td> <td>665</td> <td>665</td>	5 Sep	15	1	Pediastrum duplex	2	665	665
5Sep15197Unknown $\#197$ 1023465Sep1572Cyclotella sp.171285Sep15357Scenedesmus sp.223485Sep1564Unknown $\#64$ 316695Sep15373Gyrosigma sp.1237465Sep15242Crucigenia rectangularis295375Sep15246Microcystis aeruginosa421810174155Sep16126Navicula sp.119195Sep16201Navicula sp.157425Sep16201Navicula sp.157425Sep1672Scenedesmus sp.219435Sep1672Cyclotella sp.119195Sep1619Navicula sp.119195Sep1628Unknown $\#328$ 119385Sep16246Microcystis aeruginosa4646226219725Sep171Pediastrum duplex26886895Sep171Pediastrum duplex26886895Sep1731Scenedesmus sp.21421885Sep17 <td< td=""><td>5 Sep</td><td>15</td><td>126</td><td>Navicula sp.</td><td>1</td><td>23</td><td>24</td></td<>	5 Sep	15	126	Navicula sp.	1	23	24
5 Sep1572Cyclotella sp.171285 Sep15357Scenedesmus sp.223485 Sep1564Unknown #64316695 Sep15373Gyrosigma sp.1237465 Sep15242Crucigenia rectangularis295375 Sep15246Scenedesmus sp.247635 Sep15268Scenedesmus sp.247635 Sep16126Navicula sp.119195 Sep16201Navicula sp.157425 Sep16272Scenedesmus sp.219435 Sep1672Cyclotella sp.119195 Sep1672Scenedesmus sp.219435 Sep1619Navicula sp.119195 Sep1628Unknown #328119385 Sep1628Unknown #328119385 Sep171Pediastrum duplex26886895 Sep17268Scenedesmus sp.21421885 Sep17373Gyrosigma sp.114244785 Sep17373Gyrosigma sp.12395 Sep17376Unknown #37610231535 Sep <td>5 Sep</td> <td>15</td> <td>197</td> <td>Unknown #197</td> <td>10</td> <td>23</td> <td>46</td>	5 Sep	15	197	Unknown #197	10	23	46
5 Sep15357Scenedesmus sp.223485 Sep1564Unknown #64316695 Sep15373Gyrosigma sp.1237465 Sep15242Crucigenia rectangularis295375 Sep15268Scenedesmus sp.247635 Sep15268Scenedesmus sp.247635 Sep16126Navicula sp.119195 Sep16201Mavicula sp.157425 Sep16272Scenedesmus sp.219435 Sep1672Cyclotella sp.157225 Sep1619Navicula sp.119195 Sep1628Unknown #328119385 Sep1628Unknown #328119385 Sep1628Unknown #328119385 Sep171Pediastrum duplex26886895 Sep17268Scenedesmus sp.21421885 Sep1721Pediastrum hantzschii247135 Sep1731Scenedesmus sp.22395 Sep1731Scenedesmus sp.22395 Sep1731Scenedesmus sp.22395 Sep </td <td>5 Sep</td> <td>15</td> <td>72</td> <td><u>Cyclotella</u> sp.</td> <td>1</td> <td>71</td> <td>28</td>	5 Sep	15	72	<u>Cyclotella</u> sp.	1	71	28
5 Sep1564Unknown #64316695 Sep15373Gyrosigma sp.1237465 Sep15242Crucigenia rectangularis295375 Sep15268Scenedesmus sp.247635 Sep15446Microcystis aeruginosa421810174155 Sep16126Navicula sp.119195 Sep16201Navicula sp.157425 Sep16272Scenedesmus sp.219435 Sep1672Cyclotella sp.157225 Sep1619Navicula sp.119195 Sep1628Unknown #328119385 Sep16328Unknown #328119385 Sep171Pediastrum duplex26886895 Sep17268Scenedesmus sp.21421885 Sep17373Gyrosigma sp.114244785 Sep17373Gyrosigma sp.1231535 Sep1731Scenedesmus sp.22395 Sep1731Scenedesmus sp.22395 Sep1731Scenedesmus sp.22395 Sep1731Scenedesmus sp.123153 <t< td=""><td>5 Sep</td><td>15</td><td>357</td><td>Scenedesmus sp.</td><td>2</td><td>23</td><td>48</td></t<>	5 Sep	15	357	Scenedesmus sp.	2	23	48
5 Sep15373Gyrosigma sp.1237465 Sep15242Crucigenia rectangularis295375 Sep15268Scenedesmus sp.247635 Sep15446Microcystis aeruginosa421810174155 Sep16126Navicula sp.119195 Sep16201Navicula sp.157425 Sep16272Scenedesmus sp.219435 Sep1672Cyclotella sp.119195 Sep1619Navicula sp.119195 Sep1649Actinastrum hantzschii276215 Sep16268Scenedesmus sp.219255 Sep16328Unknown #328119385 Sep171Pediastrum duplex26886895 Sep17273Gyrosigma sp.114244785 Sep1731Scenedesmus sp.21421885 Sep1731Scenedesmus sp.22395 Sep1731Scenedesmus sp.123175 Sep1731Scenedesmus sp.22395 Sep1731Scenedesmus sp.123135 Sep1731Scenedesmus sp.123	5 Sep	15	64	Unknown #64	3	166	9
5 Sep15242Crucigenia rectangularis295375 Sep15268Scenedesmus sp.247635 Sep15446Microcystis aeruginosa421810174155 Sep16126Navicula sp.119195 Sep16201Navicula sp.157425 Sep16272Scenedesmus sp.219435 Sep1672Cyclotella sp.157225 Sep1619Navicula sp.119195 Sep16268Scenedesmus sp.219255 Sep16268Scenedesmus sp.219255 Sep16328Unknown #328119385 Sep171Pediastrum duplex26886895 Sep17268Scenedesmus sp.21421885 Sep17268Scenedesmus sp.114244785 Sep17373Gyrosigma sp.12395 Sep17376Unknown #37610231535 Sep17376Unknown #37610231535 Sep17376Eunotia sp.123135 Sep17352Pediastrum sp.210015 Sep17446Microcystis aeruginosa4189116 <td>5 Sep</td> <td>15</td> <td>373</td> <td>Gyrosigma sp.</td> <td>1</td> <td>23</td> <td>746</td>	5 Sep	15	373	Gyrosigma sp.	1	23	746
5 Sep 15 268 Scenedesmus sp. 2 47 63 5 Sep 15 446 Microcystis aeruginosa 4 218101 7415 5 Sep 16 126 Navicula sp. 1 19 19 5 Sep 16 201 Navicula sp. 1 57 42 5 Sep 16 272 Scenedesmus sp. 2 19 43 5 Sep 16 72 Cyclotella sp. 1 57 22 5 Sep 16 19 Navicula sp. 1 19 19 5 Sep 16 19 Navicula sp. 1 19 19 5 Sep 16 49 Actinastrum hantzschii 2 76 21 5 Sep 16 268 Scenedesmus sp. 2 19 25 5 Sep 16 446 Microcystis aeruginosa 4 646226 21972 5 Sep 17 1 Pediastrum hantzschii 2 47 13 5 Sep 17 373 Gyro	5 Sep	15	242	Crucigenia rectangularis	<u>s</u> 2	95	37
5 Sep 15 446 Microcystis aeruginosa 4 218101 7415 5 Sep 16 126 Navicula sp. 1 19 19 5 Sep 16 201 Navicula sp. 1 57 42 5 Sep 16 272 Scenedesmus sp. 2 19 43 5 Sep 16 72 Cyclotella sp. 1 57 22 5 Sep 16 19 Navicula sp. 1 19 19 5 Sep 16 19 Navicula sp. 1 19 19 5 Sep 16 49 Actinastrum hantzschii 2 76 21 5 Sep 16 268 Scenedesmus sp. 2 19 25 5 Sep 16 446 Microcystis aeruginosa 4 646226 21972 5 Sep 17 1 Pediastrum duplex 2 688 689 5 Sep 17 268 Scenedesmus sp. 2 142 188 5 Sep 17 373 Gyro	5 Sep	15	268	Scenedesmus sp.	2	47	63
5 Sep 16 126 Navicula sp. 1 19 19 5 Sep 16 201 Navicula sp. 1 57 42 5 Sep 16 272 Scenedesmus sp. 2 19 43 5 Sep 16 72 Cyclotella sp. 1 57 22 5 Sep 16 19 Navicula sp. 1 19 19 5 Sep 16 19 Navicula sp. 1 19 19 5 Sep 16 49 Actinastrum hantzschii 2 76 21 5 Sep 16 268 Scenedesmus sp. 2 19 25 5 Sep 16 446 Microcystis aeruginosa 4 646226 21972 5 Sep 17 1 Pediastrum duplex 2 688 689 5 Sep 17 268 Scenedesmus sp. 2 142 188 5 Sep 17 373 Gyrosigma sp. 1 142 4478 5 Sep 17 72 Cyclotella sp. <td>5 Sep</td> <td>15</td> <td>446</td> <td>Microcystis aeruginosa</td> <td>4</td> <td>218101</td> <td>7415</td>	5 Sep	15	446	Microcystis aeruginosa	4	218101	7415
5 Sep 16 201 Navicula sp. 1 57 42 5 Sep 16 272 Scenedesmus sp. 2 19 43 5 Sep 16 72 Cyclotella sp. 1 57 22 5 Sep 16 19 Navicula sp. 1 19 19 5 Sep 16 19 Actinastrum hantzschii 2 76 21 5 Sep 16 268 Scenedesmus sp. 2 19 25 5 Sep 16 328 Unknown #328 1 19 38 5 Sep 16 446 Microcystis aeruginosa 4 646226 21972 5 Sep 17 1 Pediastrum duplex 2 688 689 5 Sep 17 268 Scenedesmus sp. 2 142 188 5 Sep 17 373 Gyrosigma sp. 1 142 4478 5 Sep 17 72 Cyclotella sp. 1 23 9 5 Sep 17 31 Scenedesmus sp.<	5 Sep	16	126	Navicula sp.	1	19	19
5 Sep 16 2/2 Scenedesmus sp. 2 19 43 5 Sep 16 72 Cyclotella sp. 1 57 22 5 Sep 16 19 Navicula sp. 1 19 19 5 Sep 16 19 Actinastrum hantzschii 2 76 21 5 Sep 16 268 Scenedesmus sp. 2 19 25 5 Sep 16 328 Unknown #328 1 19 38 5 Sep 16 446 Microcystis aeruginosa 4 646226 21972 5 Sep 17 1 Pediastrum duplex 2 688 689 5 Sep 17 268 Scenedesmus sp. 2 142 188 5 Sep 17 373 Gyrosigma sp. 1 142 4478 5 Sep 17 72 Cyclotella sp. 1 23 9 5 Sep 17 31 Scenedesmus sp. 2 23 9 5 Sep 17 31 Scenedesmus sp.	5 Sep	16	201	Navicula sp.	1	57	42
5 Sep 16 72 Cyclotella sp. 1 57 22 5 Sep 16 19 Navicula sp. 1 19 19 5 Sep 16 49 Actinastrum hantzschii 2 76 21 5 Sep 16 268 Scenedesmus sp. 2 19 25 5 Sep 16 328 Unknown #328 1 19 38 5 Sep 16 446 Microcystis aeruginosa 4 646226 21972 5 Sep 17 1 Pediastrum duplex 2 688 689 5 Sep 17 268 Scenedesmus sp. 2 142 188 5 Sep 17 373 Gyrosigma sp. 1 142 4478 5 Sep 17 49 Actinastrum hantzschii 2 47 13 5 Sep 17 72 Cyclotella sp. 1 23 9 5 Sep 17 31 Scenedesmus sp. 2 23 9 5 Sep 17 316 Unknown	5 Sep	16	272	Scenedesmus sp.	2	19	43
5 Sep 16 19 Navicula sp. 1 19 19 5 Sep 16 49 Actinastrum hantzschii 2 76 21 5 Sep 16 268 Scenedesmus sp. 2 19 25 5 Sep 16 328 Unknown #328 1 19 38 5 Sep 16 446 Microcystis aeruginosa 4 646226 21972 5 Sep 17 1 Pediastrum duplex 2 688 689 5 Sep 17 268 Scenedesmus sp. 2 142 188 5 Sep 17 373 Gyrosigma sp. 1 142 4478 5 Sep 17 49 Actinastrum hantzschii 2 47 13 5 Sep 17 72 Cyclotella sp. 1 23 153 5 Sep 17 31 Scenedesmus sp. 2 23 9 5 Sep 17 201 Navicula sp. 1 23 13 5 Sep 17 395 Eunotia	5 Sep	16	12	<u>Cyclotella</u> sp.	1	57	22
5 Sep 16 49 Actinastrum nantzschii 2 76 21 5 Sep 16 268 Scenedesmus sp. 2 19 25 5 Sep 16 328 Unknown #328 1 19 38 5 Sep 16 446 Microcystis aeruginosa 4 646226 21972 5 Sep 17 1 Pediastrum duplex 2 688 689 5 Sep 17 268 Scenedesmus sp. 2 142 188 5 Sep 17 373 Gyrosigma sp. 1 142 4478 5 Sep 17 49 Actinastrum hantzschii 2 47 13 5 Sep 17 72 Cyclotella sp. 1 23 9 5 Sep 17 31 Scenedesmus sp. 2 23 9 5 Sep 17 31 Scenedesmus sp. 2 23 153 5 Sep 17 376 Unknown #376 10 23 153 5 Sep 17 395 Eun	5 Sep	16	19	Navicula sp.	1	19	19
5 Sep 16 268 Scenedesmus sp. 2 19 25 5 Sep 16 328 Unknown #328 1 19 38 5 Sep 16 446 Microcystis aeruginosa 4 646226 21972 5 Sep 17 1 Pediastrum duplex 2 688 689 5 Sep 17 268 Scenedesmus sp. 2 142 188 5 Sep 17 373 Gyrosigma sp. 1 142 4478 5 Sep 17 49 Actinastrum hantzschii 2 47 13 5 Sep 17 72 Cyclotella sp. 1 23 9 5 Sep 17 31 Scenedesmus sp. 2 23 9 5 Sep 17 31 Scenedesmus sp. 1 23 153 5 Sep 17 376 Unknown #376 10 23 153 5 Sep 17 395 Eunotia sp. 1 23 13 5 Sep 17 41 Stichococccus	5 Sep	16	49	Actinastrum nantzschil	2	76	21
5 Sep 16 328 Unknown #328 1 19 38 5 Sep 16 446 Microcystis aeruginosa 4 646226 21972 5 Sep 17 1 Pediastrum duplex 2 688 689 5 Sep 17 268 Scenedesmus sp. 2 142 188 5 Sep 17 373 Gyrosigma sp. 1 142 4478 5 Sep 17 49 Actinastrum hantzschii 2 47 13 5 Sep 17 72 Cyclotella sp. 1 23 9 5 Sep 17 31 Scenedesmus sp. 2 23 9 5 Sep 17 376 Unknown #376 10 23 153 5 Sep 17 201 Navicula sp. 1 23 13 5 Sep 17 395 Eunotia sp. 1 23 13 5 Sep 17 41 Stichococcus sp. 2 10 1 5 Sep 17 352 Pediastrum sp. <td>5 Sep</td> <td>16</td> <td>268</td> <td>Scenedesmus sp.</td> <td>2</td> <td>19</td> <td>25</td>	5 Sep	16	268	Scenedesmus sp.	2	19	25
5 Sep 16 446 Microcystis aeruginosa 4 646226 21972 5 Sep 17 1 Pediastrum duplex 2 688 689 5 Sep 17 268 Scenedesmus sp. 2 142 188 5 Sep 17 373 Gyrosigma sp. 1 142 4478 5 Sep 17 49 Actinastrum hantzschii 2 47 13 5 Sep 17 72 Cyclotella sp. 1 23 9 5 Sep 17 31 Scenedesmus sp. 2 23 9 5 Sep 17 376 Unknown #376 10 23 153 5 Sep 17 201 Navicula sp. 1 23 17 5 Sep 17 395 Eunotia sp. 1 23 13 5 Sep 17 352 Pediastrum sp. 2 100 1 5 Sep 17 352 Pediastrum sp. 2 190 38 5 Sep 18 201 Navicula sp. </td <td>5 Sep</td> <td>16</td> <td>328</td> <td>Unknown #328</td> <td>Ţ</td> <td>19</td> <td>38</td>	5 Sep	16	328	Unknown #328	Ţ	19	38
5 Sep 17 1 Pediastrum duplex 2 688 689 5 Sep 17 268 Scenedesmus sp. 2 142 188 5 Sep 17 373 Gyrosigma sp. 1 142 4478 5 Sep 17 49 Actinastrum hantzschii 2 47 13 5 Sep 17 72 Cyclotella sp. 1 23 9 5 Sep 17 31 Scenedesmus sp. 2 23 9 5 Sep 17 31 Scenedesmus sp. 2 23 9 5 Sep 17 376 Unknown #376 10 23 153 5 Sep 17 395 Eunotia sp. 1 23 17 5 Sep 17 395 Eunotia sp. 1 23 13 5 Sep 17 352 Pediastrum sp. 2 10 1 5 Sep 17 446 Microcystis aeruginosa 4 189116 6430 5 Sep 18 201 Navicula sp.	5 Sep	10	440	Microcystis aeruginosa	4	646226	21972
5 Sep 17 266 Scenedesmus sp. 2 142 188 5 Sep 17 373 Gyrosigma sp. 1 142 4478 5 Sep 17 49 Actinastrum hantzschii 2 47 13 5 Sep 17 72 Cyclotella sp. 1 23 9 5 Sep 17 72 Cyclotella sp. 2 23 9 5 Sep 17 31 Scenedesmus sp. 2 23 9 5 Sep 17 376 Unknown #376 10 23 153 5 Sep 17 201 Navicula sp. 1 23 17 5 Sep 17 395 Eunotia sp. 1 23 13 5 Sep 17 41 Stichococcus sp. 2 10 1 5 Sep 17 352 Pediastrum sp. 2 190 38 5 Sep 17 446 Microcystis aeruginosa 4 189116 6430 5 Sep 18 201 Navicula sp.	5 Sep	17	269	Pediastrum duplex	2	688	689
5 Sep 17 373 Gyrosigna sp. 1 142 4478 5 Sep 17 49 Actinastrum hantzschii 2 47 13 5 Sep 17 72 Cyclotella sp. 1 23 9 5 Sep 17 31 Scenedesmus sp. 2 23 9 5 Sep 17 376 Unknown #376 10 23 153 5 Sep 17 201 Navicula sp. 1 23 17 5 Sep 17 395 Eunotia sp. 1 23 13 5 Sep 17 395 Eunotia sp. 1 23 13 5 Sep 17 41 Stichococcus sp. 2 10 1 5 Sep 17 352 Pediastrum sp. 2 190 38 5 Sep 17 446 Microcystis aeruginosa 4 189116 6430 5 Sep 18 201 Navicula sp. 1 19 14 5 Sep 18 1 Pediastrum duplex	5 Sep	17	200	Scenedesmus sp.	2	142	188
5 Sep 17 49 Accimation manufactor	5 Sep	17	373	<u>Gyrosigna</u> sp.	1	142	44/8
5 Sep 17 72 Cyclotella sp. 1 23 9 5 Sep 17 31 Scenedesmus sp. 2 23 9 5 Sep 17 376 Unknown #376 10 23 153 5 Sep 17 201 Navicula sp. 1 23 17 5 Sep 17 201 Navicula sp. 1 23 13 5 Sep 17 395 Eunotia sp. 1 23 13 5 Sep 17 395 Eunotia sp. 2 10 1 5 Sep 17 352 Pediastrum sp. 2 190 38 5 Sep 17 446 Microcystis aeruginosa 4 189116 6430 5 Sep 18 201 Navicula sp. 1 19 14 5 Sep 18 1 Pediastrum duplex 2 1254	5 Son	17	43	Accinastrum nanczschil	2	47	13
5 Sep 17 31 Scenedesinds sp. 2 23 9 5 Sep 17 376 Unknown #376 10 23 153 5 Sep 17 201 Navicula sp. 1 23 17 5 Sep 17 395 Eunotia sp. 1 23 13 5 Sep 17 395 Eunotia sp. 1 23 13 5 Sep 17 41 Stichococcus sp. 2 10 1 5 Sep 17 352 Pediastrum sp. 2 190 38 5 Sep 17 446 Microcystis aeruginosa 4 189116 6430 5 Sep 18 201 Navicula sp. 1 19 14 5 Sep 18 1 Pediastrum duplex 2 1254 1254	5 Son	17	72	<u>Cyclocella</u> sp.	7	23	9
5 Sep 17 201 Navicula sp. 1 23 17 5 Sep 17 395 Eunotia sp. 1 23 13 5 Sep 17 395 Eunotia sp. 1 23 13 5 Sep 17 41 Stichococcus sp. 2 10 1 5 Sep 17 352 Pediastrum sp. 2 190 38 5 Sep 17 446 Microcystis aeruginosa 4 189116 6430 5 Sep 18 201 Navicula sp. 1 19 14 5 Sep 18 1 Pediastrum duplex 2 1254 1254	5 Sep	17	376	Unknown #376	10	23	9 153
5 Sep 17 395 Eunotia sp. 1 23 13 5 Sep 17 395 Eunotia sp. 1 23 13 5 Sep 17 41 Stichococcus sp. 2 10 1 5 Sep 17 352 Pediastrum sp. 2 190 38 5 Sep 17 446 Microcystis aeruginosa 4 189116 6430 5 Sep 18 201 Navicula sp. 1 19 14 5 Sep 18 1 Pediastrum duplex 2 1254 1254	5 Sep	17	201	Navigula sp	1	23	17
5 Sep 17 41 Stichococcus sp. 2 10 1 5 Sep 17 352 Pediastrum sp. 2 10 1 5 Sep 17 352 Pediastrum sp. 2 190 38 5 Sep 17 446 Microcystis aeruginosa 4 189116 6430 5 Sep 18 201 Navicula sp. 1 19 14 5 Sep 18 1 Pediastrum duplex 2 1254 1254	5 Sep	17	395	Eunotia sp	1	23	13
5 Sep 17 352 Pediastrum sp. 2 190 38 5 Sep 17 446 Microcystis aeruginosa 4 189116 6430 5 Sep 18 201 Navicula sp. 1 19 14 5 Sep 18 1 Pediastrum duplex 2 1254 1254	5 Sep	17	41	Stichococcus sp	2	10	1
5 Sep 17 446 Microcystis aeruginosa 4 189116 6430 5 Sep 18 201 Navicula sp. 1 19 14 5 Sep 18 1 Pediastrum duplex 2 1254 1254	5 Sep	17	352	Pediastrum sp	2	190	38
5 Sep 18 201 Navicula sp. 1 19 14 5 Sep 18 1 Pediastrum duplex 2 1254 1254	5 Sep	17	446	Microcystis aeruginosa	<u>ک</u>	189116	6430
5 Sep 18 1 Pediastrum duplex 2 1254 1254	5 Sep	18	201	Navicula sp.	1	19	14
	5 Sep	18	1	Pediastrum duplex	2	1254	1254

•

Appendix E, continued

•

.

 Date	Station	Cell Type	Identification	Class	Density (œlls/ml)	Biomass (ug/l)
5 Sep	18	376	Unknown #376	10	19	122
5 Sep	18	49	Actinastrum hantzschii	2	19	5
5 Sep	18	272	Scenedesmus sp.	2	38	86
5 Sep	18	373	Gyrosigma sp.	1	19	597
5 Sep	18	41	Stichococcus sp.	2		1
5 Sep	18	147	Stauroneis sp.	1	19	10
5 Sep	18	466	Unknown #466	3	35352	1202
5 Sep	19	268	Scenedesmus sp.	2	57	75
5 Sep	19	373	Gvrosigma sp.	1	28	896
5 Sep	19	201	Navicula sp.	1		7
5 Sep	19	49	Actinastrum hantzschii	2	19	5
5 Sep	19	31	Scenedesmus sp.	2	9	3
5 Sep	19	199	Surirella sp.	1	9	772
5 Sep	19	201	Navicula sp.	1	9	7
5 Sep	20	49	Actinastrum hantzschii	2	28	8
5 Sep	20	376	Unknown #376	10	19	122
5 Sep	20	373	Gyrosigma sp.	1	9	299
5 Sep	21	130	Cymatopleura sp.	1	9	50
5 Sep	21	373	Gyrosigma sp.	1	19	597
5 Sep	21	268	Scenedesmus sp.	2	9	13
5 Sep	21	123	Achnanthes sp.	1	9	49
5 Sep	21	126	Navicula sp.	1	9	9
5 Sep	21	201	Navicula sp.	1	28	21
5 Sep	21	328	Unknown #328	1	9	19
5 Sep	21	147	<u>Stauroneis</u> sp.	1	9	5
5 Sep	22	373	Gyrosigma sp.	1	38	1194
5 Sep	22	201	Navicula sp.	1	19	14
5 Sep	22	49	Actinastrum hantzschii	2	28	8
5 Sep	23	10	Scenedesmus sp.	2	9	6
5 Sep	23	441	Neidium ladogense	1	9	23
5 Sep	23	268	<u>Scenedesmus</u> sp.	2	9	13
5 Sep	23	365	Navicula sp.	1	9	90
5 Sep	23	197	Unknown #197	10	9	18
5 Sep	24	373	<u>Gyrosigma</u> sp.	1	9	299
5 Sep	24	402	<u>Cocconeis</u> sp.	1	19	64
5 Sep	24	126	Navicula sp.	1	19	19
9 Sep	10	300	Calycomonas ovalis	3	3535	389
9 Sep	10	64	Unknown #64	3	5587	319
y Sep	10	320	Unknown #320	5	494	97807
y sep	10 11	427	Unknown #427	2	38	351
9 Sep	11	300	Larycomonas ovalis	3	684	75
9 Sep	⊥⊥ 11	04 220	Unknown #64	3	532	30
9 Sop	13	320	Unknown #320	5	171	33856
9 Sep	13	10	<u>Scenedesmus</u> sp.	2	57	33
2 Deb	τJ	41 1	SCICHOCOCCUS Sp.	2	5	1

Date	Station	Cell Type	Identification	Class	Density (cells/ml)	Biomass (ug/l)
9 Sep	13	64	Unknown #64	3	38	2
9 Sep	13	300	Calycomonas ovalis	3	76	8
9 Sep	13	268	Scenedesmus sp.	2	19	25
9 Sep	13	281	Euglena sp.	7	19	16
9 Sep	13	107	Chroococcus sp.	4	38	
9 Sep	13	118	Crucigenia tetrapedia	2	19	1
9 Sep	13	446	Microcystis aeruginosa	4	20147	685
9 Sep	14	235	Unknown #235	10	114	34
9 Sep	14	64	Unknown #64	-3	494	28
9 Sep	14	41	Stichococcus sp.	2	4	1
9 Sep	14	49	Actinastrum hantzschij	2	228	63
9 Sep	14	450	Merismopaedia sp.	4	38	1
9 Sep	14	446	Microcystis aeruginosa	4	12544	427
9 Sep	14	445	Microcystis aeruginosa	4	13874	472
9 Sep	15	49	Actinastrum hantzschij	2	522	144
9 Sep	15	196	Scenedesmus obliquus	2	47	14
9 Sep	15	268	Scenedesmus sp.	2	47	63
9 Sep	15	197	Unknown #197	10	47	91 91
9 Sep	15	1	Pediastrum duplex	2	712	713
9 Sep	15	446	Microcystis aeruginosa	4	31503	1071
9 Sep	15	445	Microcystis aeruginosa	4	4799	163
9 Sep	16	191	Scenedesmus quadricauda	2	456	321
9 Sep	16	254	Scenedesmus sp.	. 2	152	23
9 Sep	16	64	Unknown #64	3	76	4
9 Sep	16	72	Cvclotella sp.	1	342	133
9 Sep	16	235	Unknown #235	10	38	11
9 Sep	16	201	Navicula sp.	1	38	28
9 Sep	16	357	Scenedesmus sp.	2	38	76
9 Sep	16	242	Crucigenia rectangulari	s 2	38	15
9 Sep	16	268	Scenedesmus sp.	$\frac{2}{2}$	114	150
9 Sep	16	373	Gvrosigma sp.	1		1194
9 Sep	16	119	Achnanthes exigua	1	8	1
9 Sep	16	446	Microcystis aeruginosa	4	27369	931
9 Sep	17	118	Crucigenia tetrapedia	2	7	1
9 Sep	17	191	Scenedesmus guadricauda	$\overline{2}$	95	67
9 Sep	17	72	Cvclotella sp.	1	76	30
9 Sep	17	22	Cyclotella sp.	1	38	60
9 Sep	17	254	Scenedesmus sp.	2	19	3
9 Sep	17	412	Navicula sp.	1	19	89
9 Sep	17	324	Bacillaria paradoxa	1	19	42
9 Sep	17	201	Navicula sp.	1	19	14
9 Sep	17	446	Microcystis aeruginosa	4	15186	514
9 Sep	17	445	Microcystis aeruginosa	4	2831	96
9 Sep	18	272	Scenedesmus sp.	2	76	172
9 Sep	18	22	Cyclotella sp.	1	57	90

Date	Station	Cell Type	Identification	Class	Density (œlls/ml)	Biomass (ug/l)
9 Sep	18	126	Navicula sp.	.1	38	38
9 Sep	18	417	Navicula sp.	1	19	19
9 Sep	18	72	Cyclotella sp.	1	19	7
9 Sep	18	49	Actinastrum hantzschii	2	19	5
9 Sep	18	268	Scenedesmus sp.	2	38	50
9 Sep	18	96	Microcystis aeruginosa	4	19	25
9 Sep	18	446	Microcystis aeruginosa	4	437	15
9 Sep	18	445	Microcystis aeruginosa	4	475	16
9 Sep	19	223	Eunotia sp.	1	19	13
9 Sep	19	191	Scenedesmus quadricauda	. 2	76	54
9 Sep	19	147	Stauroneis sp.	· 1	38	20
9 Sep	19	201	Navicula sp.	1	19	14
9 Sep	19	1	Pediastrum duplex	2	304	304
9 Sep	19	268	Scenedesmus sp.	2	38	50
9 Sep	19	373	Gyrosigma sp.	1	57	1791
9 Sep	19	49	Actinastrum hantzschii	2	38	10
9 Sep	19	64	Unknown #64	3	38	2
9 Sep	19	272	Scenedesmus sp.	2	19	43
9 Sep	19	96	Microcystis aeruginosa	4	19	43
9 Sep	19	118	Crucigenia tetrapedia	2	76	5
9 Sep	19	446	Microcystis aeruginosa	4	608	21
9 Sep	19	445	Microcystis aeruginosa	4	190	6
9 Sep	20	137	Navicula sp.	1	38	40
9 Sep	20	96	Microcystis aeruginosa	4	19	20
9 Sep	20	279	<u>Scenedesmus</u> sp.	2	19	22
9 Sep	20	49	Actinastrum hantzschii	2	19	5
9 Sep	20	446	Microcystis aeruginosa	4	228	8
9 Sep	21	49	Actinastrum hantzschii	2	38	10
9 Sep	21	26	<u>Navicula</u> sp.	1	9	9
9 Sep	21	117	<u>Cymatopleura</u> sp.	1	9	127
9 Sep	21	373	Gyrosigma sp.	1	9	299
9 Sep	22	371	<u>Pinnularia</u> sp.	1	9	13
9 Sep	22	119	Achnanthes exigua	1	9	51
9 Sep	22	201	Navicula sp.	1	38	28
9 Sep	22	96	Microcystis aeruginosa	4	28	21
9 Sep	22	49	Actinastrum hantzschil	2	19	5
9 Sep	22	376	Unknown #376	10	9	61
9 Sep	22	148	Diploneis sp.	1	9	17
9 Sep	22	199	<u>Surirella</u> sp.	1	9	772
9 Sep	23	3/1	Pinnularia sp.	1	9	51
y Sep	23	201	Navicula sp.	1 1	9	
y Sep	23	325	LUNOTIA Sp.	Ţ	9	46
y sep	23	440	Microcystis aeruginosa	4	1349	46
9 Sep	23	440	Actionation hast-achie	4	323	11
y sep	24	47	ACCUMASTICA UNI DANTZSCHII	2	9	3

. •

Appendix	Ε,	continued	
----------	----	-----------	--

•

Date	Station	Cell Type	Identification	Class	Density (cells/ml)	Biomass (ug/l)
9 Sep	24	126	Navicula sp.	1	9	9
9 Sep	24	430	Cocconeis sp.	1	19	15
13 Sep	10	300	Calycomonas ovalis	3	3112	342
13 Sep	10	320	Unknown #320	5	213	42320
13 Sep	10	98	Prorocentrum minimum	5	71	40
13 Sep	10	281	Euglena sp.	7	47	40
13 Sep	10	64	Unknown #64	3	356	20
13 Sep	11	300	Calycomonas ovalis	3	7716	849
13 Sep	11	64	Unknown #64	3	3193	182
13 Sep	11	93	Gymnodinium verruculosu	m 5	76	7
13 Sep	11	80	Gymnodinium sp.	- 5	38	97
13 Sep	12	300	Calycomonas ovalis	3	228	25
13 Sep	12	64	Unknown #64	3	228	13
13 Sep	12	320	Unknown #320	5	19	3762
13 Sep	12	197	Unknown #197	10	19	36
13 Sep	12	235	Unknown #235	10	38	11
13 Sep	12	191	Scenedesmus quadricauda	2	76	54
13 Sep	12	217	Scenedesmus bijuga	2	19	9
13 Sep	13	191	Scenedesmus quadricauda	2	76	54
13 Sep	13	8	Crucigenia sp.	2	76	33
13 Sep	13	107	Chroococcus sp.	4	380	49
13 Sep	13	64	Unknown #64	3	76	4
13 Sep	13	300	<u>Calycomonas ovalis</u>	3	76	8
13 Sep	13	268	<u>Scenedesmus</u> sp.	2	76	100
13 Sep	13	445	Microcystis aeruginosa	4	36340	1236
13 Sep	14	41	Stichococcus sp.	2	16	2
13 Sep	14	268	Scenedesmus sp.	2	114	150
13 Sep	14	72	<u>Cyclotella</u> sp.	1	76	30
13 Sep	14	196	Scenedesmus obliquus	2	114	35
13 Sep	14	235	Unknown #235	10	38	11
13 Sep	14	120	Selenastrum sp.	2	228	5
13 Sep	14	446	Microcystis aeruginosa	4	297264	10107
13 Sep	15	242	Crucigenia rectangularia	<u>s</u> 2	475	185
13 Sep	15	72	Cyclotella sp.	1	190	74
13 Sep	15	49	Actinastrum hantzschii	2	47	13
13 Sep	15	268	Scenedesmus sp.	2	95	125
13 Sep	15	41	<u>Stichococcus</u> sp.	2	9	1
13 Sep	15	402	<u>Cocconeis</u> sp.	1	47	161
13 Sep	15	264	<u>Scenedesmus</u> sp.	2	142	112
13 Sep	15	442	High and the second sec	2	1330	201
13 cm	15	440	Microcystis aeruginosa	4	02/219	21325
13 cm	15	440	rucrocystis aeruginosa	4	9978	339
13 Sep	16	22 61	Upprover #64	ວ ⊥	142 570	224
13 Sep	16	268	Scenedesmus so	2	95	125
		_ ~ ~			~~~	

.

Date	Station	Cell Type	Identification	Class	Density (œlls/ml)	Biomass (ug/l)
13 Sep	16	223	<u>Eunotia</u> sp.	1	23	13
13 Sep	16	114	Eunotia sp.	1	23	16
13 Sep	16	242	Crucigenia rectangulari	<u>.s</u> 2	23	9
13 Sep	16	72	<u>Cyclotella</u> sp.	1	95	37
13 Sep	16	272	<u>Scenedesmus</u> sp.	2	23	54
13 Sep	16	430	<u>Cocconeis</u> sp.	1	23	19
13 Sep	16	126	Navicula sp.	1	23	24
13 Sep	16	446	Microcystis aeruginosa	4	8600	292
13 Sep	17	123	Achnanthes sp.	1	19	99
13 Sep	17	72	<u>Cyclotella</u> sp.	1	152	59
13 Sep	17	268	Scenedesmus sp.	2	19	25
13 Sep	17	22	<u>Cyclotella</u> sp.	1	38	60
13 Sep	17	442	Pediastrum biradiatum	2	1235	187
13 Sep	17	254	Scenedesmus sp.	2	57	9
13 Sep	17	191	Scenedesmus quadricauda	<u> </u>	57	40
13 Sep	17	117	Cymatopleura sp.	1	19	255
13 Sep	17	201	<u>Navicula</u> sp.	1	38	28
13 Sep	17	300	Calycomonas ovalis	3	38	4
13 Sep	17	196	Scenedesmus obliquus	2	19	6
13 Sep	18	191	Scenedesmus quadricauda	2	57	40
13 Sep	18	72	<u>Cyclotella</u> sp.	1	57	22
13 Sep	18	268	<u>Scenedesmus</u> sp.	2	57	75
13 Sep	18	201	<u>Navicula</u> sp.	1	38	28
13 Sep	18	22	<u>Cyclotella</u> sp.	1	57	9 0
13 Sep	18	446	Microcystis aeruginosa	4	339078	11529
13 Sep	19	268	Scenedesmus sp.	2	38	50
13 Sep	19	22	<u>Cyclotella</u> sp.	1	38	60
13 Sep	19	41	Stichococcus sp.	2	2	1
13 Sep	19	96	Microcystis aeruginosa	4	57	6
13 Sep	19	373	Gyrosigma sp.	1	38	1194
13 Sep	19	446	Microcystis aeruginosa	4	50557	1719
13 Sep	20	96	Microcystis aeruginosa	4	38	1
13 Sep	20	26	Navicula sp.	1	9	9
13 Sep	20	199	<u>Surirella</u> sp.	1	9	112
13 Sep	20	72	Cyclotella sp.	Ţ	38	15
13 Sep	20	201	Navicula sp.	1	19	14
13 Sep	20	191	Scenedesmus quadricauda	2	9	7
13 Sep	20	49	Actinastrum hantzschil	2	9	3
13 Sep	20	149	Unknown #149	10	9	420
13 Sep	20	3/3	Gyrosigna sp.	Ţ	9	299
13 Sep	20	440	HICTOCYSEIS aeruginosa	4	845 E7	29
13 Sep	21	147 201	Navionia #142	10	5/	2322
13 Sep	21	201	Pippularia m	1	19	102
13 Son	21 21	122	<u>rimutatia</u> Sp.	1	19	102
The set	~ 1	123	<u>numanunes</u> sp.	T	19	27

. •
Date	Station	Cell Type	Identification	Class	Density (cells/ml)	Biomass (ug/l)
13 Sep	21	96	Microcystis aeruginosa	4	19	99
13 Sep	21	49	Actinastrum hantzschii	2	38	10
13 Sep	21	446	Microcystis aeruginosa	4	8914	303
13 Sep	21	445	Microcystis aeruginosa	4	3212	109
13 Sep	22	49	Actinastrum hantzschii	2	12	3
13 Sep	22	96	Microcystis aeruginosa	4	25	7
13 Sep	22	371	Pinnularia sp.	1	12	68
13 Sep	22	201	Navicula sp.	1	12	9
13 Sep	22	191	Scenedesmus quadricauda	ı 2	12	9
13 Sep	22	373	Gyrosigma sp.	. 1	12	398
13 Sep	22	446	Microcystis aeruginosa	4	3915	133
13 Sep	23	1	Pediastrum duplex	2	334	335
13 Sep	23	96	Microcystis aeruginosa	4	15	15
13 Sep	23	49	Actinastrum hantzschii	2	30	8
13 Sep	23	201	Navicula sp.	1	15	11
13 Sep	23	373	Gyrosigma sp.	1	15	478
13 Sep	23	446	Microcystis aeruginosa	4	1003	34
13 Sep	24	96	Microcystis aeruginosa	4	12	1
13 Sep	24	373	Gyrosigma sp.	1	12	398
13 Sep	24	49	Actinastrum hantzschii	2	12	3
13 Sep	24	126	Navicula sp.	1	25	25
19 Sep	10	300	Calycomonas ovalis	3	3104	341
19 Sep	10	64	Unknown #64	3	3231	184
19 Sep	10	48	Unknown #48	10	63	32
19 Sep	10	80	Gymnodinium sp.	5	63	161
19 Sep	12	300	Calycomonas ovalis	3	437	48
19 Sep	12	64	Unknown #64	3	589	34
19 Sep	12	446	Microcystis aeruginosa	4	2090	71
19 Sep	13	120	Selenastrum sp.	2	76	3
19 Sep	13	107	Chroococcus sp.	4	57	7
19 Sep	13	41	Stichococcus sp.	2	10	1
19 Sep	13	268	Scenedesmus sp.	2	76	100
19 Sep	13	300	Calycomonas ovalis	3	190	21
19 Sep	13	64	Unknown #64	3	76	4
19 Sep	13	446	Microcystis aeruginosa	4	1121	38
19 Sep	14	64	Unknown #64	3	190	11
19 Sep	14	270	Pediastrum sp.	2	1254	45
19 Sep	14	268	<u>Scenedesmus</u> sp.	2	19	25
19 Sep	14	41	Stichococcus sp.	2	2	1
19 Sep	14	49	Actinastrum hantzschii	2	57	16
19 Sep	14	72	<u>Cyclotella</u> sp.	1	38	15
19 Sep	14	446	Microcystis aeruginosa	4	1976	67
19 Sep	15	72	Cyclotella sp.	1	152	59
19 Sep	15	64	Unknown #64	3	988	56
19 Sep	15	270	Pediastrum sp.	2	342	12

Appendix E, continued

Appendix E, continued

٠

.

Date	Station	Cell Type	Identification	Class	Density (œlls/ml)	Biomass (ug/l)
19 Sep	15	1	Pediastrum duplex	2	950	950
19 Sep	15	41	Stichococcus sp.	2	11	1
19 Sep	15	107	Chroococcus sp.	4	608	79
19 Sep	15	446	Microcystis aeruginosa	4	401496	13651
19 Sep	16	201	Navicula sp.	· 1	57	42
19 Sep	16	263	Scenedesmus sp.	2	19	25
19 Sep	16	49	Actinastrum hantzschii	2	19	5
19 Sep	16	440	Nitzschia sp.	¹ 1	19	19
19 Sep	16	72	Cyclotella sp.	1	38	15
19 Sep	16	41	Stichococcus sp.	2	20	2
19 Sep	16	26	Navicula sp.	1	19	18
19 Sep	16	405	Navicula sp.	1	19	19
19 Sep	16	234	Navicula sp.	1 1	38	56
19 Sep	16	10	Scenedesmus sp.	2	57	33
19 Sep	16	1	Pediastrum duplex	2	646	646
19 Sep	16	446	Microcystis aeruginosa	4	11822	402
19 Sep	17	264	Scenedesmus sp.	2	19	15
19 Sep	17	10	Scenedesmus sp.	2	57	33
19 Sep	17	41	Stichococcus sp.	2	2	1
19 Sep	17	49	Actinastrum hantzschii	2	38	10
19 Sep	17	402	Cocconeis sp.	1	38	129
19 Sep	17	126	Navicula sp.	1	95	95
19 Sep	17	147	Stauroneis sp.	1	19	10
19 Sep	17	446	Microcystis aeruginosa	• 4	6709	228
19 Sep	18	373	Gyrosigma sp.	1	19	597
19 Sep	18	126	Navicula sp.	1	19	19
19 Sep	18	49	Actinastrum hantzschii	2	19	5
19 Sep	18	258	Pediastrum tetras	2	19	4
19 Sep	18	442	Pediastrum biradiatum	2	1862	281
19 Sep	18	201	Navicula sp.	1	38	28
19 Sep	18	446	Microcystis aeruginosa	4	190	6
19 Sep	18	445	Microcystis aeruginosa	4	2470	84
19 Sep	19	147	Stauroneis sp.	1	19	10
19 Sep	19	201	Navicula sp.	1	57	42
19 Sep	19	49	Actinastrum hantzschii	2	38	10
19 Sep	19	72	Cyclotella sp.	1	19	7
19 Sep	19	197	Unknown #197	10	114	219
19 Sep	19	446	Microcystis aeruginosa	4	91231	3102
19 Sep	20	373	Gyrosigma sp.	1	19	597
19 Sep	20	49	Actinastrum hantzschii	2	38	10
19 Sep	20	448	Navicula sp.	1	38	2018
19 Sep	20	201	Navicula sp.	1	38	28
19 Sep	20	449	Cymbella sp.	1	19	536
19 Sep	20	446	Microcystis aeruginosa	4	4067	138
19 Sep	20	445	Microcystis aeruginosa	4	2090	71

Date S	tation	Cell Type	Identification	Class	Density (cells/ml)	Biomass (ug/1)
19 Sep 19 Sep	21 21 21 21 21 21 21 22 22 22 22 23 23 23 24 24 24 24 24	49 357 201 10 158 446 445 373 49 446 201 158 440 49 323 402	Actinastrum hantzschii Scenedesmus sp. Navicula sp. Scenedesmus sp. Pinnularia sp. Microcystis aeruginosa Microcystis aeruginosa Gyrosigma sp. Actinastrum hantzschii Microcystis aeruginosa Navicula sp. Pinnularia sp. Nitzschia sp. Nitzschia sp. Actinastrum hantzschii Unknown #323 Cocconeis sp.	2 2 1 2 1 4 4 1 2 4 1 1 2 5 1	19 19 76 19 950 2622 19 19 399 19 399 9 9 9 9	5 38 56 11 119 32 89 597 5 14 14 60 10 3 49 32

•

•

Appendix E, continued

Appendix F. Primary productivity (uM CO₂/h) near light saturation at Neuse River stations sampled between 23 August (23A) and 19 September (19S), 1983.

٠

Appendix	н.	Ammonium	nitrogen	CC	oncentra	tions	(uM)	at	Neuse	Ri	ver s	sta	tions
		sampled	between	23	August	(23A)	and	19 :	Septemb	er	(19S)),	1983.

Station							Date	9					
-	23A	24A	25A	26A	28A	30A	15	3S	5S	7S	95	135	195
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	5.7 6.4 9.3 -8.6 6.4 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 7.9 5.0 5.0 5.0 7.9	0.9 <0.7 15.2 25.3 8.4 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7	<0.7 0.8 17.6 30.0 4.6 0.9 <0.7 <0.7 1.2 1.8 1.9 4.1 4.7 7.1 8.3	$\begin{array}{c} 1.6\\ 1.5\\ 20.6\\ 33.6\\ 1.3\\ <0.7\\ 3.7\\ 1.8\\ 4.6\\ 6.1\\ 7.1\\ 8.7\\ 9.2\end{array}$	<pre><0.7 <0.7 29.0 24.8 2.1 <0.7 2.3 <0.7 <0.7 <0.7 4.8 6.9 5.8 5.8 6.5</pre>	1.2 11.3 24.0 25.4 3.6 0.9 <0.7 2.1 3.1 7.2 7.0 8.1 7.1 10.4 7.6	<pre><0.7 <0.7 24.6 25.9 1.3 1.6 1.4 4.8 1.3 2.9 <0.7 1.8 1.2 5.4 8.6</pre>	5.0 12.5 34.5 30.5 8.8 1.7 1.5 1.2 1.6 14.9 13.7 11.8 13.5 9.7	$\begin{array}{c} 1.3\\ 12.6\\ 26.0\\ 18.9\\ 1.8\\ 3.1\\ 3.1\\ 1.2\\ 3.1\\ 5.1\\ 7.9\\ 10.6\\ 10.1\\ 11.8\\ 7.5\end{array}$	$\begin{array}{c} 0.7\\ 6.6\\ 20.2\\ 19.5\\ 3.1\\ 4.4\\ 2.9\\ 3.8\\ 4.0\\ 8.1\\ 8.0\\ 7.7\\ 9.9\\ 8.9\end{array}$	$1.3 \\ 0.8 \\ 15.9 \\ 23.0 \\ 4.4 \\ 1.2 \\ < 0.7 \\ 1.3 \\ 3.4 \\ 2.9 \\ 5.1 \\ 8.9 \\ 9.6 \\ 12.6 \\ 13.5 \\ 13$	<0.7 <0.7 17.7 24.8 <0.7 <0.7 2.9 3.6 <0.7 <0.7 3.3 3.4 4.0 4.7 10.1	

Appendix I. Filterable Kjeldahl nitrogen (FKN) concentrations (uM) at Neuse River stations sampled between 23 August (23A) and 19 September (19S), 1983.

Station							Date	9					
·	23A	24A	25A	26A	28A	30A	1S	3S	5S	7S	9S	13S	195
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24							35.1 34.2 75.3 71.9 31.2 30.9 33.6 40.0 35.7 34.2 35.1 31.5 30.3 38.2 49.4	49.4 54.0 61.6 62.0 29.2 47.1 35.5 34.8 32.8 44.1 42.1 45.8 46.1 37.2	45.8 52.0 66.0 62.0 42.8 35.2 33.2 39.1 35.8 34.5 45.8 34.5 45.4 45.8 39.5 32.8	49.2 43.0 55.0 63.7 48.5 52.9 52.0 30.0 27.2 30.0 36.2 40.5 39.2 39.2 36.2	39.1 44.6 39.1 63.4 44.6 26.5 29.2 32.3 32.6 35.9 33.6 46.2 49.8	39.2 36.2 43.7 67.1 32.9 30.5 39.2 30.5 24.5 28.1 38.0 34.1 35.9 39.8	46.2 48.4 57.6 67.3 36.7 35.7 32.5 32.8 32.5 29.2 39.3 41.9 47.4 54.7

Station	Date														
-	23A	24A	25A	26A	28A	30A	1S	3S	5\$	7S	9S	13S	195		
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	40 42 44 30 42 77 377 38 47 59 125 983 70 23 31	66 72 24 32 42 77 63 119 63 160 72 23 17 14 12	32 30 14 13 21 59 50 43 14 25 74 7 5	37 86 18 23 15 47 38 203 87 361 16 23 16 9 15		75 66 13 88 255 114 8 22 18 22 12 19 1	162 88 35 22 69 82 404 105 23 82 83 35 15	45 39 10 29 156 92 39 44 34 8 5 4 7 1	2202 102 55 56 50 52 40 20 52 40 7	69 36 28 34 172 2671 40 20 13 13 10 9 7 11	47 38 24 21 34 31 24 13 12 10 12 10 11 8	189 201 85 110 443 506 102 136 116 125 44 65 52 37 40	127 219 61 85 132 287 84 22 27 57 14 33 29 26 13		

Appendix J. Particulate Kjeldahl nitrogen (PKN) concentrations (uM) at Neuse River stations sampled between 23 August (23A) and 19 September (19S), 1983.

Appendix K. Filterable reactive phosphorus (PO₄) concentrations (uM) at Neuse River stations sampled between 23 August (23A) and 19 September (19S), 1983.

Station							Dat	e	<u> </u>				
	23A	24A	25A	26A	28A	30A	15	35	5S	7S	9S	13S	195
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	3.9 5.8 7.1 6.52 6.52 6.81 7.6 7.6 7.4 7.70 1.9	3.9 5.2 6.8 6.5 6.5 6.5 7.7 7.7 7.7 8.4 10.3 11.9	4.5 4.2 5.5 7.1 5.8 6.5 7.7 7.7 8.1 7.7 8.4 8.4 11.0 11.6	3.2 2.9 4.2 5.2 5.2 5.2 8.1 7.1 8.7 9.7 12.3 14.2	$\begin{array}{c} 3.9\\ 2.9\\ 5.2\\ 5.8\\ 10.0\\ 10.7\\ 4.8\\ 4.8\\ 11.0\\ 12.3\\ 13.5\\ 15.5\\ 17.4 \end{array}$	$\begin{array}{r} 3.2\\ 4.5\\ 4.8\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 12.3\\ 13.5\\ 16.1\\ 15.2\\ 23.5\end{array}$	$\begin{array}{c} 4.5\\ 4.5\\ 7.7\\ 7.1\\ 6.5\\ 8.4\\ 7.7\\ 9.0\\ 9.7\\ 10.0\\ 11.6\\ 13.2\\ 15.5\\ 14.2\\ 11.0\\ \end{array}$	$\begin{array}{c} 3.9\\ 4.8\\ 4.5\\ 4.52\\ 4.55\\ 5.52\\ 5.55\\ 5.5\\ 5.5\\ 112.\\ 12.\\ \end{array}$	5.5 6.5 7.7 7.4 6.1 7.1 8.1 7.7 7.7 10.3 12.3 12.3 15.5 16.1	2.6 3.9 4.5 3.9 9.7 6.8 8 7.7 9.7 11.0 11.6 14.8 14.8		3.9 3.9 4.8 5.2 3.9 5.2 6.8 5.2 5.8 7.4 9.7 11.0 11.9 13.9 15.5	$\begin{array}{r} 3.2\\ 2.6\\ 3.5\\ 3.5\\ 4.2\\ 5.2\\ 10.0\\ 11.0\\ 12.3\\ 15.2\\ 17.4\\ 19.0\\ 21.3\\ 20.0 \end{array}$

Appendix	L.	Total fil	.terable	e pho	osphorus	(TFP)	concent	trations	(uM) a	it Nei	ıse
		River	: stati	ons	sampled	betw	een 23	August	(23A)	and	19
		Septer	mber (1	9S),	1983.						

Station							Date	9					
	23A	24A	25A	26A	28A	30A	1S	35	5S	7S	95	13S	19S
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	7.7 3.2 8.4 6.5 6.8 7.4 7.1 9.7 8.7 9.7 11.9	$5.2 \\ 5.2 \\ 5.8 \\ 8.1 \\ 7.1 \\ 6.8 \\ 7.1 \\ 7.4 \\ 7.7 \\ 8.1 \\ 8.4 \\ 10.0 \\ 11.9 \\$	5.52576.8100511222568.1000000000000000000000000000000000000	$\begin{array}{c} 4.8\\ 4.8\\ 7.1\\ 9.7\\ 8.7\\ 9.7\\ 10.0\\ 45.5\\ 9.7\\ 7.7\\ 11.0\\ 12.9\\ 15.2\\ 14.5\\ 14.2\end{array}$	$\begin{array}{c} 7.1\\ 6.5\\ 11.6\\ 10.3\\ 5.8\\ 9.0\\ 12.6\\ 14.2\\ 14.2\\ 11.6\\ 12.6\\ 15.2\\ 20.0\\ 19.4\\ 17.4 \end{array}$	$\begin{array}{c} 7.7\\ 8.1\\ 11.6\\ 13.5\\ 10.0\\ 11.6\\ 12.3\\ 10.3\\ 11.6\\ 16.8\\ 16.1\\ 16.8\\ 15.2\\ 23.5\end{array}$	5.2 5.2 8.1 7.7 7.1 7.7 7.1 8.4 9.0 10.3 12.3 14.2 15.2 11.0	$\begin{array}{c} 6.5\\ 6.5\\ 7.7\\ 7.1\\ 6.5\\ 8.4\\ 7.7\\ 9.0\\ 10.0\\ 10.0\\ 10.0\\ 12.3\\ 12.6\end{array}$	5.2 7.1 8.4 6.1 6.8 9.0 9.7 8.4 9.0 10.3 12.3 12.6 15.5 16.1	3.9 4.8 4.5 10.5 5.5 5.7 6 6 5 11.6 5 14.8	3.9 5.2 4.8 5.8 3.9 7.1 7.4 7.4 9.0 10.3 11.0 13.5	5.2 5.5 6.5 9.6 6.8 7.4 9.0 112.9 112.8 15.5	5.2 4.5 5.5 6.5 8.4 11.6 14.5 17.4 19.7 25.5 20.0

Appendix M.	Total phosphorus	(TP) cond	centration	s (uM)	at	Neuse	River
	stations sampled	between	23 August	(23A)	and	19 Set	ember
	(19S), 1983.						

Station							Date						
	23A	24A	25A	26A	28A	30A	1S	35	5S	7S	95	13S	19S
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	$\begin{array}{c} 6.1\\ 5.2\\ 5.25\\ 8.15\\ 5.1\\ 10.7\\ 7.3\\ 10.7\\ 10.3\\ 10.$	$\begin{array}{c} 3.9\\ 6.9\\ 5.1\\ 5.5\\ 7.5\\ 9.8\\ 19.7\\ 7.4\\ 9.1\\ 7.1\\ 7.1\\ \end{array}$	$\begin{array}{c} 7.1\\ 6.5\\ 6.5\\ 10.0\\ 7.4\\ 8.4\\ 11.0\\ 11.0\\ 13.5\\ 9.7\\ 12.3\\ 11.0\\ 12.9\\ 12.6\end{array}$	$7.1 \\ 5.5 \\ 8.1 \\ 10.0 \\ 9.7 \\ 8.1 \\ 11.6 \\ 13.5 \\ 10.0 \\ 17.4 \\ 11.0 \\ 12.6 \\ 14.5 $		$ \begin{array}{c} 11.6\\ 8.1\\ 7.7\\ 7.7\\ 14.8\\ 44.5\\ 90.3\\ 95.5\\ 12.0\\ 13.6\\ 14.2\\ 14.2\\ 21.6\\ \end{array} $	$\begin{array}{c} 7.7\\ 6.5\\ 9.0\\ 8.1\\ 9.7\\ 10.0\\ 17.1\\ 11.9\\ 7.1\\ 9.0\\ 16.1\\ 13.6\\ 14.5\\ 13.6\end{array}$	$\begin{array}{c} 7.1\\ 7.1\\ 5.2\\ 7.7\\ 9.0\\ 8.1\\ 11.0\\ 8.4\\ 10.3\\ 10.3\\ 9.0\\ 10.3\\ 12.6\\ 13.9\end{array}$	$\begin{array}{c} 6.5\\ 4.5\\ 7.7\\ 9.0\\ 8.1\\ 11.0\\ 11.6\\ 8.4\\ 9.0\\ 9.7\\ 11.0\\ 14.2\\ 14.8\end{array}$	$\begin{array}{r} 8.1\\ 6.5\\ 9.0\\ 9.0\\ 7.4\\ 15.5\\ 45.2\\ 11.6\\ 10.0\\ 8.4\\ 10.6\\ 11.0\\ 11.9\\ 13.5\\ 12.9\end{array}$	5.8 6.8 7.4 5.8 7.7 9.7 112.3 13.5 14.5	$\begin{array}{r} 9.0\\ 10.3\\ 9.0\\ 10.6\\ 10.3\\ 11.0\\ 11.6\\ 10.3\\ 10.6\\ 12.6\\ 14.2\\ 15.5\\ 16.1\\ 16.8\end{array}$	

Appendix N. Total inorganic carbon (TIC) concentrations (uM) at Neuse River stations sampled between 23 August (23A) and 19 September (19S), 1983.

د

.

									1				
Station	٦						Date	9	* - - -				
	23A	24A	25A	26A	28A	30A	15	35	58	75	9S	13S	19S
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	0.95 0.93 1.15 0.56 0.57 0.34 0.35 0.36 0.37 0.37 0.37	0.98 0.95 1.07 0.82 0.53 0.49 0.72 0.64 0.62 0.67 0.73	0.87 1.14 0.80 0.61 0.59 0.59 0.54 0.60 0.65 0.60 0.60 0.59	0.79 0.81 0.84 0.93 0.71 0.63 0.60 0.57 0.59 1.00 0.55 0.56 0.55 0.56 0.63	$\begin{array}{c} 1.05\\ 1.14\\ 1.30\\ 1.29\\ 1.00\\ 0.78\\ 1.00\\ 0.85\\ 0.73\\ 0.69\\ 0.68\\ 0.76\\ 0.76\\ 0.77\\ 0.77\\ 0.77\\ \end{array}$	$\begin{array}{c} 1.11\\ 1.17\\ 1.17\\ 1.08\\ 0.74\\ 0.62\\ 0.55\\ 0.54\\ 0.51\\ 0.49\\ 0.51\\ 0.60\\ 0.58\\ 0.55\\ 0.60\\ \end{array}$	1.15 1.37 1.30 0.85 0.83 0.66 0.67 0.70 0.70 0.72 0.70 0.70 0.70 0.70	$\begin{array}{c} 1.09\\ 1.15\\ 1.06\\ 0.98\\ 0.78\\ 0.78\\ 0.70\\ 0.63\\ 0.52\\ 0.51\\ 0.41\\ 0.49\\ 0.50\\ 0.50\\ 0.56\end{array}$	$\begin{array}{c} 1.22\\ 1.16\\ 1.06\\ 1.01\\ 0.65\\ 0.81\\ 0.70\\ 0.52\\ 0.50\\ 0.47\\ 0.60\\ 0.59\\ 0.68\\ 0.68\\ 0.68\end{array}$	$\begin{array}{c} 1.21\\ 1.22\\ 1.22\\ 1.13\\ 0.91\\ 0.67\\ 0.71\\ 0.64\\ 0.61\\ 0.55\\ 0.59\\ 0.61\\ 0.59\\ 0.64\\ 0.79\end{array}$	1.28 1.02 1.08 1.03 0.73 0.62 0.60 0.57 0.59 0.52 0.66 0.71 0.75 0.73 0.81		

71